
Page 1 of 199 Version 3.0

CDHS

WEB-BASED

APPLICATION ARCHITECTURE

STANDARDS AND PROCESSES

Page 2 of 199 Version 3.0

Document Change Control History

Release Date Version Release Notes
11/03/04 3.0 New Revision Reflecting

Infrastructure
Modifications

02/19/04 2.2 Initial Document Release

Page 3 of 199 Version 3.0

Using this Document
This document describes the standard application development architecture for
the California Department of Health Services (CDHS). This document contains
details about the CDHS standard architecture, technologies, database conventions,
and required presentation. This document includes the standard set of support
services defined and created by the Information Technology Services Division
(ITSD) to support CDHS business functions.

This document is intended to identify best practices, procedures and processes
allow developers to create applications that are efficient, secure, and
maintainable. This document is not intended to be a tutorial on how to write N-
tier applications nor is it a replacement for professional publications or courses on
how to efficient business applications.

Developing an application is a process and each application has a unique life
cycle. This documentation covers the basic information regarding project life
cycle management but is not intended to provide the full spectrum of project
management and oversight activities that the Department must participate in while
meeting State requirements.

The ITSD maintains documentation regarding server builds, processes, naming
standards, software configurations on enterprise servers and other information
security-specific information. This information is not to be distributed
management signature of a confidentiality and non-disclosure agreement.

Audience

The audience for this document includes those sponsoring, managing and
developing and hosting an application on behalf of the CDHS.

Document Quick Reference

This document contains a significant amount of information. In order to make the
document more valuable it has been separated into volumes, each volume
containing icon keys to identify the intended audience. In addition, it contains an
abbreviated and extended Table of Contents to assist the reader in locating the
information most pertinent to their assigned effort.

Page 4 of 199 Version 3.0

The volumes address the following:

⇒ Table 1 Document Quick Reference

Volume Title Content Audience
N/A Using this Document Describes document structure, contents,

audience, navigation assistance and basic
introduction.

All Readers, Preferred starting point

Volume II Core ITSD Services Describes the operational support
business functions of ITSD as a whole.

Readers interested in the range of
services ITSD offers.

Volume III Project Initiation &
Management

Provides information for those that want
to initiate and deploy an information
technology project.

Readers interested in the process for
engaging information technology
use.

Volume VI Architecture Background Provides insight into the key
considerations made in the adoption of a
web-based application architecture model.

Volume V Application Architecture Provides the logical requirements for
web-based development for any
application, the required methods for
implementing an application in the CDHS
network environment, and describes the
required processes for utilizing the
environment.

Readers interested some of the
technical concepts behind the
adopted architecture model.

Volume VI Change Control Provides infrastructure and web-based
application change management
information.

Readers interested in change
management from a process and
technical requirement perspective.

Page 5 of 199 Version 3.0

Icon Keys

This document is structured through the use of volumes to address targeted
audiences. The following keys are associated with volume and section headings.
The purpose of each is to indicate the type of audience that may be interested in
the contents of the major topic area.

Key Content Type Audience

 Database Application Developers, Database Administrators

 Developer Specific Application Developers

 Educational Anyone

 Executive Executive Staff

 General Anyone

 Process Project Managers, Technical Staff

 Security Project Sponsors, Project Managers, Technical
Staff

 Systems
Administration

Systems Administrators, Hosting Entities

Page 6 of 199 Version 3.0

ABBREVIATED TABLE OF CONTENTS

VOLUME I: INTRODUCTION ... 15
VOLUME II: CORE INFORMATION TECHNOLOGY SERVICES 17
VOLUME III: PROJECT INITIATION ... 29
VOLUME IV: ARCHITECTURE BACKGROUND.. 35
VOLUME V: APPLICATION ARCHITECTURE.. 57

SECTION I APPLICATION ARCHITECTURE OVERVIEW.. 58
SECTION II BEFORE GETTING STARTED.. 59
SECTION III LOGICAL ARCHITECTURE ... 61
SECTION IV ITSD HOSTED APPLICATION INFRASTRUCTURE ... 64
SECTION V SERVER STANDARDS FOR HOSTING APPLICATIONS .. 73
SECTION VI APPLICATION SECURITY MODEL REQUIREMENTS .. 77
SECTION VII APPLICATION CODING STANDARDS .. 98
SECTION VIII APPLICATION CODING BEST PRACTICES... 105
SECTION IX SQL BEST PRACTICES .. 128
SECTION X DEVELOPMENT AND DEPLOYMENT PROCESS.. 143

VOLUME VI: CHANGE CONTROL.. 155
SECTION I APPLICATION CHANGE MANAGEMENT... 156
SECTION II INFRASTRUCTURE CHANGE CONTROL.. 178

VOLUME VII: APPENDICIES.. 179
APPENDIX A WEB AND DATABASE HOSTING QUESTIONNAIRE ... 180
APPENDIX C DESKTOP STANDARDS .. 196
APPENDIX D SERVER STANDARDS .. 197
APPENDIX E DEPARTMENT OF HEALTH SERVICES RESEARCH CENTER (CDHSRC)
ARCHITECTURE & DESIGN ... 198

CDHS Web-Based Application Architecture Standards and Processes

Page 7 of 199 Version 3.0

DETAILED TABLE OF CONTENTS

Audience __ 3
Document Quick Reference ___ 3
Icon Keys ___ 5

VOLUME I: INTRODUCTION ___ 15
Background___ 15

VOLUME II: CORE INFORMATION TECHNOLOGY SERVICES ______________ 17
Standards __ 17
Project Management & Oversight ___ 17
Administration __ 18

IT Procurement __ 18
IT Training ___ 18

Application ___ 19
General Support Functions ___ 19

Architecture Design__ 19
Change Management ___ 19

Database and Data Reporting ___ 20
DB2 Database Administration & Business Objects Reporting _________________________ 20
SQL Database Administration__ 20
Data Reporting__ 21

Mainframe__ 21
Infrastructure and Security __ 21
Data Guidance __ 22
Key Data Entry ___ 22
Development & Production Application Support ___________________________________ 22

Support ___ 23
Medi-Cal Applications ___ 23
Public Health and Administration Divisions of CDHS ____________________________ 23
Customers___ 23
Services __ 23

Web___ 25
Content Management___ 25
Web Applications ___ 25

Security __ 26
Infrastructure ___ 26

Network Connectivity___ 26
Asset Management ___ 27
Desktop Support ___ 27
Server Hosting __ 27
Messaging __ 28
LAB___ 28
Help Desk __ 28

VOLUME III: PROJECT INITIATION __ 29
ITSD Services ___ 29
Project Management Approach ___ 29

Introducing the Project __ 29
Project Management Approach ___ 31

Concept Definition Process___ 31
Initiation & Approval Process __ 32

Security Review Process __ 33
Web and Database Review Process__ 34

VOLUME IV: ARCHITECTURE BACKGROUND ______________________________ 35
Overview___ 36

User vs. Code Security __ 37

CDHS Web-Based Application Architecture Standards and Processes

Page 8 of 199 Version 3.0

Relationship between IIS and .NET Web Applications ____________________________ 38
Authentication___ 39

IIS Authentication ___ 39
Basic: __ 39
Basic over SSL: __ 40
Digest: ___ 40
Integrated Windows Authentication: __ 40
Anonymous: ___ 40

ASP.NET Authentication ___ 40
Windows Authentication:___ 40
Forms:__ 40
Passport Authentication __ 41

SQL Authentication__ 41
Windows Authentication:___ 41
SQL Server Authentication:___ 41

Authentication Decision Points__ 41
Role-Based Authorization__ 42

Role Based___ 42
Resource Based ___ 43
Methods for Achieving Authorization__ 43
Trusted Sub-System Model __ 44

Advantages of the Trusted Sub-System Model __________________________________ 44
Disadvantages of the Trusted Sub-System Model ________________________________ 45

Impersonation / Delegation __ 45
Advantages of the Impersonation / Delegation __________________________________ 46
Disadvantages of the Impersonation / Delegation ________________________________ 46

Authorization Decision Points __ 46
Code Access Security ___ 47

Understanding CAS __ 48
.NET Built in Code Access Permissions Classes ______________________________________ 49

Data Access Layer ___ 52
SQL Server Injections___ 53

Web Services vs. Remoting ___ 54
Web Services ___ 55

VOLUME V: APPLICATION ARCHITECTURE ______________________________ 57
SECTION I APPLICATION ARCHITECTURE OVERVIEW ____________________________ 58
SECTION II BEFORE GETTING STARTED _______________________________________ 59

Developer Orientation __ 59
Third-Party Components __ 59
Commercial Solutions Selections __ 59

SECTION III LOGICAL ARCHITECTURE ___ 61
Logical Model___ 61

End User ___ 61
Presentation Layer ___ 62
Application/Business Logic Layer ___ 62
Data Access Layer ___ 62
Data Layer__ 62

SECTION IV ITSD HOSTED APPLICATION INFRASTRUCTURE ________________________ 64
Distinct Security Zones to Meet Business Requirements __________________________ 64

Intranet __ 65
Extranet__ 65
Internet __ 67

Distinct Servers for Application Life Cycle Management__________________________ 68
Development__ 68
Test ___ 69
Production__ 69
CDHS Research Center (CDHSRC)__ 70

Commercial-off-the-Shelf Product Hosting ____________________________________ 71
Enterprise-Reporting ___ 72

CDHS Web-Based Application Architecture Standards and Processes

Page 9 of 199 Version 3.0

SECTION V SERVER STANDARDS FOR HOSTING APPLICATIONS _____________________ 73
Specific Server Configuration Requirements ___ 73

Web Server __ 73
Application Server (that hosts the Web service) ____________________________________ 74
SQL Database Server___ 74
Active Directory Configurations __ 75

Port Configuration Requirements__ 75
SECTION VI APPLICATION SECURITY MODEL REQUIREMENTS ______________________ 77

Authentication___ 77
Authorization ___ 77

Intranet__ 77
Extranet ___ 77
Internet__ 77
Trusted Sub-System Model __ 77

Enabling Authentication and Authorization in CDHS Applications _______________________ 78
Intranet – __ 78
Internet – __ 78

Anonymous ___ 78
Authentication, Forms-Based__ 79

Extranet –__ 79
Understanding and Enabling Role-Based Security __________________________________ 80

Identity & Principal ___ 81
Windows Identity __ 83
Checking Identity and Role Membership ____________________________________ 83
Impersonation ___ 85
Principal Permission Object __ 85
Declarative Role-Based Security Checks ____________________________________ 87

Implementing Role-Based Security for CDHS Applications __________________________ 88
Passing Credentials for Authentication to Web Services___________________________ 88
Specifying Client Credentials for Windows Authentication ________________________ 88

Using Default Credentials__ 89
Set the PreAuthenticate Property __ 89

Business Logic Layer (BLL) ___ 89
Data Access Layer ___ 91

Applying in the Intranet Zone __ 92
Applying in the Extranet Zone ___ 94
Intranet/Extranet Applications__ 94

Code Access Security ___ 95
CDHS CAS Policy __ 96

Web Servers (Medium Trust)__ 96
Default Configuration ___ 96
Application Servers (Full Trust) ___ 96

Default Configuration ___ 97
SECTION VII APPLICATION CODING STANDARDS _________________________________ 98

CDHS Standards for .NET Applications_______________________________________ 98
General Overview __ 98

CDHS Coding Standards __ 98
Exception Handling & Custom Error Pages __ 98

Exception Handling __ 98
Custom Error Pages__ 99

Input Validation __ 100
Asserts and Demands __ 100
Assemblies Specify Permission Requests___ 100
Transfer to Page __ 101
Comments ___ 101
Function Header Comments ___ 102
Creating Web Services and Database References ____________________________________ 103

SECTION VIII APPLICATION CODING BEST PRACTICES_____________________________ 105
CDHS Best Practices for .NET Applications __________________________________ 105

Microsoft Application Blocks__ 105
Overview ___ 105

CDHS Web-Based Application Architecture Standards and Processes

Page 10 of 199 Version 3.0

Data Access Application Block (for SQL Server only) __________________________ 105
Exception Management Application Block ____________________________________ 105

Database Access __ 106
Data Access Block__ 106
Connection Pooling ___ 106
Data Reader ___ 106
Preventing SQL Injection Attacks__ 106

Definitions___ 106
Pascal Casing Defined___ 106
Camel Casing Defined___ 107

Project Namespaces ___ 107
Function Names __ 108
Constant Names __ 108
Public and Protected Class Variables __ 108
Private Class Variables ___ 109
Control Names ___ 109
Code Structure ___ 109
Finalizers__ 110
Wrap Finally Clauses that Restore Security-Related State in an Outer Try Block ___________ 110
LinkDemand Security Checks on Types do not Protect Access to the Type's Fields _________ 111
Short Circuiting in VB ___ 112
Saving State ___ 112

View State __ 112
Application Cache / Application Object ___ 112
Session State __ 113
SQL Server / NT State Service __ 113

Base Page Class __ 113
Isolate Dependencies __ 113
List Management ___ 114
Data Binding ___ 114
Web Services __ 115

Chunky Calls __ 115
Asynchronous Calls___ 115
MarshallByRef___ 115
Distributing Type Information to the Client ______________________________________ 116
Web Service Proxy Creation __ 116

Caching ___ 117
Security ___ 117

Passwords / Connection Strings / Sensitive Data __________________________________ 117
Database Accounts ___ 117
Code Security ___ 117
Web Config Security Settings ___ 117
Security Testing and Tools ___ 118
Isolated Storage __ 118
Component Deployment ___ 118
Security Policy___ 118

Configuration Files __ 118
Reading Data __ 118
Development Settings vs. Production Settings ____________________________________ 119
ASP.NET Worker Process Identity ___ 120

User Interface Layer ___ 120
General___ 120

Authentication __ 120
Exception Handling __ 120
Business Emissary ___ 120

Business Layer ___ 121
General___ 121

Exception Handling __ 121
Service Interface ___ 121

Service Interfaces __ 121
Passing Data to the Façade___ 122
Transaction Management __ 122

CDHS Web-Based Application Architecture Standards and Processes

Page 11 of 199 Version 3.0

ASP.NET Performance___ 123
View State / Session State / Application Cache / Application object ___________________ 123
Page Event Processing / Page Directives __ 123
Perceived Performance __ 124
Exception Handling ___ 125
Web Services __ 125
Code Optimizations ___ 126

SECTION IX SQL BEST PRACTICES __ 128
Identifiers ___ 129

Case__ 129
Prefixes and Suffixes __ 129

Database Objects ___ 129
Scripts ___ 129
Stored Procedures __ 130

Tables __ 130
Create Table ___ 130
Altering Tables ___ 131

Indexes ___ 133
Stored Procedures (and other DML scripts)___________________________________ 133
Error Handling ___ 135
Schema Scripts ___ 136
Formatting __ 137
Whitespace __ 137
DML Statements (select, insert, update, delete) ________________________________ 137

Select___ 138
Inserts __ 140
Updates ___ 141
Deletes__ 142

Cursors ___ 142
SECTION X DEVELOPMENT AND DEPLOYMENT PROCESS _________________________ 143

Team Development Process ___ 143
Initiating a New Project in CDHS __ 143
Overview of the Team Development Environment ___________________________________ 143

Developer Workstation __ 145
Essential Servers ___ 145

Visual SourceSafe ___ 145
Web Services Server ___ 146
Database Server ___ 146

Code Version Control & Promotion ___ 146
Logical View __ 146
Physical Flow ___ 147

Movement of Code from Developer Workstation to Development Servers ___________ 148
First-Time Deployment___ 148
Subsequent Deployments ___ 149

Movement of Code from Development to Test _________________________________ 149
First-Time Deployment___ 149
Subsequent Deployments ___ 149

Procedures for Team Development ___ 149
Visual SourceSafe Setup__ 150
VSS on the Workstation __ 150

VSS and Workstation Folder Structure __ 150
Standard Folder Structure __ 151
Initial Project Creation of ITSD SourceSafe Solution_______________________________ 151
Other SourceSafe Project Structures __ 152

Code Check-In/Out __ 152
Code Check-In___ 152
Check-Out __ 153

Assemblies __ 153
Referencing Assemblies ___ 153
Include Outer System Assemblies with Projects___________________________________ 153
Sharing Assemblies ___ 154

CDHS Web-Based Application Architecture Standards and Processes

Page 12 of 199 Version 3.0

SourceSafe Security Issues __ 154
VOLUME VI: CHANGE CONTROL ___ 155

SECTION I APPLICATION CHANGE MANAGEMENT______________________________ 156
Change Management Objectives ___ 156
In-Scope Items ___ 157
Change Management Timeline ___ 158
Required Working Documents ___ 159
Change Factors __ 159
Change Factor Ratings___ 160
Tracking Requests___ 161
Change Management Process__ 161

Preparation and Submission __ 162
Assessment ___ 162

Complete __ 162
Incomplete ___ 162

Concept Authorization or Rejection __ 162
Planning__ 163
Change Authorization or Rejection Meeting______________________________________ 163
Scheduling __ 163
Implementation __ 163
Post–Implementation Review ___ 165

Application Change Management Processes Diagrams__________________________ 165
Level 1 & 2, High and Medium Complexity __ 166
Level 3, Low Complexity ___ 167
Level 4, Emergency ___ 168

Application Change Request Form__ 171
Part A – Change Summary __ 171
Part B – Change Detail ___ 172

Database Change Detail__ 172
Application Change Detail ___ 173

Change Status Supplemental Forms ___ 174
Change Recovery Plan Form __ 175
Detailed Change Instructions Form ___ 176

Post-Implementation Change Status Details Form______________________________ 177
SECTION II INFRASTRUCTURE CHANGE CONTROL ______________________________ 178

Infrastructure Change Control ___ 178
VOLUME VII: APPENDICIES __ 179

APPENDIX A WEB AND DATABASE HOSTING QUESTIONNAIRE ______________________ 180
Project Information ___ 181
Application Details __ 182

General Information __ 182
Application Hosting Details __ 184
Application Development & Deployment Details__________________________ 186
Systems Integration Details___ 188
Additional Services ___ 189
Database Security __ 189
Database Functions ___ 190
Database Jobs ___ 192

Technical Diagrams ___ 193
APPENDIX C DESKTOP STANDARDS __ 196
APPENDIX D SERVER STANDARDS ___ 197
APPENDIX E DEPARTMENT OF HEALTH SERVICES RESEARCH CENTER (CDHSRC)
ARCHITECTURE & DESIGN ___ 198

CDHS Web-Based Application Architecture Standards and Processes

Page 13 of 199 Version 3.0

FIGURES
TABLE OF CONTENTS

⇒ Figure 1 Securing Web Applications... 36
⇒ Figure 2 Logical View of User (Role-Based) Security) 37
⇒ Figure 3 Logical View of Code-Based Security .. 38
⇒ Figure 4 IIS/ASP.NET Relationship.. 38
⇒ Figure 5 Authentication and Authorization Methods in Main Application

Layers.. 39
⇒ Figure 6 Trusted Sub-System Model for Authorization Based on Roles 44
⇒ Figure 7 Impersonation/Delegation ... 45
⇒ Figure 8 Security Stack Walk .. 48
⇒ Figure 9 Typical Data Access Layer.. 53
⇒ Figure 10 Logical Application Architecture .. 61
⇒ Figure 11 CDHS Intranet Architecture .. 65
⇒ Figure 12 CDHS Extranet N-Tier Architecture ... 66
⇒ Figure 13 CDHS Internet Architecture .. 67
⇒ Figure 14 CDHS High-Level Extranet Design .. 80
⇒ Figure 15 Identity... 81
⇒ Figure 16 Principal... 82
⇒ Figure 17 Role Based Validation Code Sample .. 83
⇒ Figure 18 Checking Identity & Role Membership 84
⇒ Figure 19 Case Sensitive String Compare Code Sample.............................. 84
⇒ Figure 20 WindowsBuiltInRole Enumeration Code Sample...................... 85
⇒ Figure 21 Impersonation .. 85
⇒ Figure 22 Principal Permission Object .. 86
⇒ Figure 23 Creating and Demanding Principal Permission Code Sample 86
⇒ Figure 24 Declarative Demand .. 87
⇒ Figure 25 Principal Permission Demand Code Sample............................... 87
⇒ Figure 26 N-Tier Model... 90
⇒ Figure 27 CDHS Application Layers in the Intranet 92
⇒ Figure 28 Intranet / Extranet Application Interfaces 95
⇒ Figure 29 Visual SourceSafe Single Solution Model 144
⇒ Figure 30 Logical Team Development Process ... 147
⇒ Figure 31 CDHS Physical Team Development ... 148
⇒ Figure 32 Change Management Timeline.. 159

CDHS Web-Based Application Architecture Standards and Processes

Page 14 of 199 Version 3.0

Tables
Table of Contents

⇒ Table 1 Document Quick Reference.. 4
⇒ Table II Project Management & Oversight Functions................................. 17
⇒ Table III Application Support by Customer .. 23
⇒ Table IV Information Security Support Functions 26
⇒ Table V Project Reporting Requirements Summary 30
⇒ Table VI ASP.NET CAS Trust Levels .. 50
⇒ Table VII CAS Medium Permission State Settings..................................... 51
⇒ Table VIII Remoting vs. Web Services ... 55
⇒ Table IX Web Services Overview ... 56
⇒ Table X Web Server Configuration Requirements...................................... 73
⇒ Table XI Web Application Server Configuration Requirements................. 74
⇒ Table XII SQL Server Configuration Requirements 74
⇒ Table XIII CDHS Active Directory Configuration Requirements 75
⇒ Table XIV CDHS Minimum Firewall Configuration Requirements........... 75
⇒ Table XV CDHS High-Level Extranet Design.. 82
⇒ Table XVI Control Names ... 109
⇒ Table XVII Implementing Finalizers... 110

CDHS Web-Based Application Architecture Standards and Processes

Page 15 of 199 Version 3.0

VVOOLLUUMMEE II :: IINNTTRROODDUUCCTTIIOONN

The California Department of Health Services (CDHS) is responsible for a wide
range of public health issues facing California. It is responsible for disease
prevention, promotion of nutritional health and quality health care for the elderly.
Information technology is an essential component of maintaining and presenting
information and statistics. The internet is now a critical medium for providing
public health services.

The CDHS has a robust, scalable and supported infrastructure available for
essential and critical business applications and reporting. This environment is
approved by the Information Security Office (ISO) and is maintained as a support
service to Programs by CDHS’ Information Technology Services Division
(ITSD). The ITSD will adopt new products, processes, services and technologies
for the benefit of the enterprise. Infrastructure is available to support applications,
developed on behalf of CDHS business units by State or contracted staff, through
their lifecycle.

Use and adherence to information technology architecture standards and
processes enables CDHS to develop and maintain business applications that are
efficient, secure, and easily maintained. This manual provides both an overview
and detailed description of the CDHS Information Technology Architecture
Standards and Processes. Technical specifications are available by contacting the
ITSD, Information Management Architecture Section.

Background

For many years the CDHS provided a general Information Technology (IT)
infrastructure that allowed a wide variety of tools, methodology and support
models to be implemented. While this permitted maximum flexibility for
information technology development it resulted in a proliferation of development
tools and database products as well as infrastructure support locations. The
potential risk to business application compromise or operational cost issues is
very high when applications are developed without a consistent methodology or
standard tools being complicated by turnover of State and contractor support.

Recognizing the need to reduce support costs and to make more efficient use of
available resources CDHS began a long-term effort to change how its physical IT
infrastructure is managed and how new applications are developed. Through a
collaborative process CDHS programs established standards for the purchase of
computers and enterprise servers. For computers it set a standard useful life with
a goal to replace a percentage of these computers each year. A similar cycle was
established for enterprise servers. Each year the technical specifications for new
computer and server purchases are reviewed and updated as needed. The move to

CDHS Web-Based Application Architecture Standards and Processes

Page 16 of 199 Version 3.0

the East End campus also provided an upgraded connectivity infrastructure and an
opportunity to reduce the number of server support locations.

The growth in use of the internet prompts CDHS to use it as an efficient and
economical means to distribute information about health issues and programs to
the public and to conduct business with other healthcare organizations. The ease
of access to enterprise resources connected to the internet creates a need to adhere
to information technology standards so that security policies can be implemented
at an operational level to protect CDHS assets. Standardization of CDHS web
sites and web application development tools and methods is critical in managing a
variety of project implementation and support risks.

CDHS Web-Based Application Architecture Standards and Processes

Page 17 of 199 Version 3.0

VVOOLLUUMMEE II II :: CCOORREE IINNFFOORRMMAATTIIOONN TTEECCHHNNOOLLOOGGYY
SSEERRVVIICCEESS

This volume describes the core essential services that the Information Technology
Services Division (ITSD) provides for web hosting purposes. This does not
address all services that the Division provides. You can obtain current
information from the California Department of Health Services (CDHS) Intranet
at http://itsd.int.dhs.ca.gov.

Standards

The following items highlight the areas of influence that the ITSD has in terms of
CDHS standards and specifications:

 Project Management

 Server Procurement,
Environmental Conditions,
Base Agents, Build, and
Configuration (this includes
file, print, fax, messaging,
application, web, and
database servers)

 Desktop, Laptop and Mobile
Computing Hardware and
Software Procurement and
Configuration

 Asset Management
Specifications

 Database Specifications

 Web Application
Architecture

 Web Site Branding &
Management

 Network Connectivity

 Environment and Information
Security

Project Management & Oversight

ITSD performs the following project management activities for CDHS:

⇒ Table II Project Management & Oversight Functions

Function Description
Control Agency
Liaison

1. Provide CDHS liaison to the Department of
Finance and other control agencies

2. Review Feasibility Study Reports (FSR) and
Purchase Requests for adherence to control
agency requirements.

IT Strategic Planning

1. Align CDHS application development and
information infrastructure with the CDHS
Strategic Plan, procurement and project initiation
support.

CDHS Web-Based Application Architecture Standards and Processes

Page 18 of 199 Version 3.0

Function Description
Enterprise Project
Management

1. Promote service-driven partnership between IT
and the Program Areas

2. Demonstrate improved project initiation and
delivery success

3. Enable consistent, systematic, repeatable
approach to project management

4. Improve the skills and professional capabilities
of project managers

5. Ensure timely and quality IT planning that is
consistent with CDHS business

6. Plans, strategies, plans, and objectives
Project Oversight 1. Ensure oversight of IT planning, acquisitions,

and projects compliance with State control
agency requirements

Administration

ITSD provides the services in the following administrative areas:

IT Procurement

 Provide oversight of all information technology procurements for CDHS

 Set policy and develop and maintain procedures that optimize the
purchasing of IT goods and services.

 Develop policies and procedures to leverage CDHS purchasing power,
provide a level of standardization, and meet mandated reporting
requirements.

 Implement purchasing procedures to cover all IT equipment, products and
services that are purchased by CDHS with CDHS funds or funds which
CDHS has custodial oversight.

 Annually develop and manages the Department’s primary Data Center
Interagency Agreement (I/A) with Health and Human Services Data
Center.

 Provide oversight for CMAS contracts with internal and external funding
sources manage contracts with Health and Human Services Agency.

IT Training

 Provides a central training facility that can be used to provide training for
CDHS programs.

CDHS Web-Based Application Architecture Standards and Processes

Page 19 of 199 Version 3.0

Application

ITSD provides a broad range of support services for applications. The support is
basically geared toward three support environments: 1) mainframe, 2) fat client
and 3) thin-client.

General Support Functions

The general support functions provided for each of these application types include
the following.

Architecture Design

 Design the connectivity among the variety of components in the CDHS
information infrastructure.

 Research the capabilities and limitations of evolving hardware and
software in the CDHS technical environment.

Change Management

The following change management areas are addressed via support teams in the
ITSD:

 Desktop Management

 Server Management

 Infrastructure Management (see the Appendix, Infrastructure Change
Management)

 Application Management (see the Appendix, Application Change
Management)

Desktop and server management functions are available for change management
support for a wide array of desktops and servers with distinctive microprocessors.
Support of the desktop includes supporting Windows Operating Systems (OS) and
over 6,000 office suites. Providing support for these OS’ and microprocessors
increased in the degree of change being imposed on the computing infrastructure.
This includes solutions for developing application scripting and deploying
software for the desktop, “Tier Management” for servers and desktops to
accommodate operational changes to the production environment.

Infrastructure management encompasses desktops, servers and the networks. Any
introduction or modification to existing standards, configurations or the

CDHS Web-Based Application Architecture Standards and Processes

Page 20 of 199 Version 3.0

introduction or removal of new nodes in the CDHS network are addressed in this
change management process.

Application management is a newly developed process for the purpose of
addressing the deployment and maintenance of the application hosing
environment that deals more specifically with code and database changes.

Database and Data Reporting

ITSD provides support for enterprise and program specific database requirements
in the following areas:

DB2 Database Administration & Business Objects Reporting

 Maintain the enterprise DB2 database located at the Health and Human
Services Data Center (HHSDC).

 Set data access standards to provide a secure, reliable, high performance
computing platform for CDHS program business applications that utilize
this database platform.

SQL Database Administration

 Configure, install and maintain the database development, test, and
production servers, utilities and application tools on the network.

 Allocate system storage and plan future storage requirements to meet
program application needs.

 Create primary database storage structures (tablespaces) once application
developers have designed an application.

 Control and monitor user access to the production database servers.

 Monitor and optimize the performance of the production database servers.

 Plan for backup and recovery of production database information.

 Mentor and assist application developers in the use of industry best
practices for data access methodology.

 In coordination with the Information Security Office and the Production
Server Hosting function, develop and maintain policies and procedures
that meet information security rules and regulations.

 Maintain standard for accessing data using the data access layer.

 Participate in database risk management assessment and mitigation.

CDHS Web-Based Application Architecture Standards and Processes

Page 21 of 199 Version 3.0

Data Reporting

 The Business Objects support function is responsible for making this
enterprise reporting tool available to CDHS programs. This highly flexible
tool can provide secure access over the Internet to both DB2 and SQL
databases. Design database aggregations that in turn will provide ad hoc
access for reporting.

 Provide report and database design assistance as well as training and
mentoring for programs.

 For small applications, Microsoft’s reporting services are supported.

Mainframe

ITSD supports the application environment in conjunction with the HHSDC in the
following areas.

Infrastructure and Security

 Management of large
mainframe projects

 Service Request (SR)
processing

 Equipment inventory

 VTAM definition requests

 Mainframe printing

 VTAM Printing Subsystem
(VPS)

 NetView

 Publication of departmental
bulletins

 User ID administration
(TSO

 CICS

 TAO-CICS e-mail

 Teale HRIS)

 RACF security

 Administration of the
Master Rental Agreement
(MRA) contract for both
routers and 3270
equipment

 Circuit requests

 Administers the CDHS
remote access accounts

 Provides assistance on
planning conversions from
mainframe to LAN based
solutions, analyzes billing
data, and performs project
management

CDHS Web-Based Application Architecture Standards and Processes

Page 22 of 199 Version 3.0

Data Guidance

 The Data Guidance function is to coordinate the operation of the
enterprise’s mainframe systems through scheduling, job
submission/balancing, coordination with customers and output review and
distribution. Processing is performed on two shifts, plus overtime on
weekends.

Key Data Entry

 The Key Entry function is responsible for the transcription of information
into relevant electronic media.

Development & Production Application Support

Provide design, development and support of computer applications using industry
best practices. Currently these services are provided to two categories of CDHS
Programs.

CDHS Web-Based Application Architecture Standards and Processes

Page 23 of 199 Version 3.0

⇒ Table III Application Support by Customer

Support Medi-Cal
Applications

Public Health
and
Administration
Divisions of
CDHS

Customers CDHS Medi-Cal
Program

 Counties

 Fiscal
Intermediaries

 Federal
Government

 Health Plans

 Universities

 Health Care
Providers
(Hospitals /
Clinics)

 Women, Infants and
Children
Supplemental Food
(WIC) Branch,
Primary Care and
Family Health
Division

 WIC Local Agencies

 Immunization
Branch, Preventive
Services Division

 Policy and Training
Branch, Licensing
and Certification
Division

 Licensing and
Certification District
Offices

 Refugee Health
Branch

 Administration
Division

 Personnel Branch

 Departmental
Personnel Liaisons

 Federal Government

 Counties

Services Provide
application
design,
development and
maintenance

 Application
Development and
Maintenance Support

 Technical Support
(DB2, VSAM and

CDHS Web-Based Application Architecture Standards and Processes

Page 24 of 199 Version 3.0

(ranging from
minor fixes to
large, multi-year
development
projects),
production
support, and ad
hoc reporting.

 The section also
provides a full-
time MEDS help
desk.

 Support for
CDHS IT
Applications
other than Medi-
Cal

ADABAS backup
and recovery)

 Control Agency
Liaison Support
(helping other CDHS
entities with IT-
related FSRs, external
contract BCPs and
special project
reports)

 Help Desk support
for some systems

 Hardware support
(ACLAIMS,
WICinfo)

 Technical support
(ACLAIMS,
WICinfo)

CDHS Web-Based Application Architecture Standards and Processes

Page 25 of 199 Version 3.0

Web

The technology trend is to provide access to information and data via the web.
Support services include the dissemination and refresh of data and information via
the Internet for employees, business partners and the public. The core services in
this support area include the following.

Content Management

 Develop templates that can be used by programs to maintain a similar
“look-and-feel” across the CDHS Internet presence, commonly referred to
as “branding.”

 Mentor and train program web coordinators in the use of standard web
design and maintenance tools.

 Assist programs in “tagging” the information content of their websites so
it can be easily retrieved by an end user content search.

 Design and maintain an organized structure for over 10,000 CDHS web
pages to minimize maintenance effort by program web coordinators.

 Provide publishing mechanisms with approvals included in workflow.

Web Applications

 Develop standards for application development resulting in the dynamic
retrieval of data from various sources.

 Provide an infrastructure and the methods for engaging in the utilization of
the infrastructure for data management and reporting purposes

 In conjunction with other infrastructure functions, document an
application development model that allows CDHS programs to build
scaleable, reliable, secure and manageable applications in the appropriate
security environment.

 Implement and develop standard components and tools that can be utilized
by any customer using the documented application development model.

 Compile a shared library of standards and procedures, designs, and
working test models along with operating procedures.

 Coordinate technical teams to research and test proposed application
development methodologies and tools that may impact standard security
and operating procedures.

 Provide a library of components used to provide database access for
internet, intranet, and extranet applications based on the physical
architecture and security requirements.

CDHS Web-Based Application Architecture Standards and Processes

Page 26 of 199 Version 3.0

Security

Security is an integral component of securing the business of the Department.
The following areas of service are provided.

⇒ Table IV Information Security Support Functions

Disaster
Recovery and
Operational
Recovery
Planning

 Implement Disaster Recovery and Operational Recovery
Planning

 Work closely with the Health and Human Services Agency
Data Center (HHSDC) on recovery strategies for CDHS
information residing at HHSDC.

Information
Security

 Oversee the implementation of an effective virus protection
program, intrusion detection systems, homeland security
preparedness, security audits and investigations program,
and the incident response program.

 Provide annual training to employees and contract staff on
the current CDHS Information Security policy

 Conduct information security annual policy reviews and
make revisions as necessary.

 Conduct Feasibility Study Report reviews

 Provide security and privacy consultation, application and
infrastructure assessments, and review of requests for
security practice reviews.

Infrastructure

ITSD provides the core support for conducting business in the enterprise. The
architectural technology base for CDHS includes basic support services as
follows.

Network Connectivity
 Local and wide area network (LAN/WAN) support and cabling for CDHS

and its customers.

 It installs and configures the network software and hardware (switches,
hubs, routers, firewalls, patch panels), defines infrastructure standards,
provides network management, and performs project management.

 It is responsible for the design, implementation, operation,
troubleshooting, capacity planning, change management, and maintenance

CDHS Web-Based Application Architecture Standards and Processes

Page 27 of 199 Version 3.0

of the complex, multi-protocol LAN/WAN environment and the network
infrastructure.

Asset Management

 Tracking and reporting on IT assets (hardware and software products) that
are owned (IT property with CDHS state tags) and utilized by CCDHS
staff

 Deployment of an automated data collection tool (SMS) and the
integration of the inventory data into the Remedy Help Desk/Asset
Management system

 Preparation of a software management plan containing the information
that is required to be submitted annually to the Department of Finance.

Desktop Support

 Provide Desktop Tier Management. This is the process that provides for
the modification of any part of an organization's distributed desktop
computer environment and that subsequently supports the acceptance,
approval and implementation of those modifications to the desktop and
infrastructure.

Server Hosting

 Performs business needs assessments for the CDHS server environment.

 Reviews new information regarding new OS products, upgrades, OS
patches, service packs, security patches.

 Analyzes functionality and features of these products.

 Develops recommendations for which new technologies to implement.

 Engineers and tests new technologies on non-production servers.

 Develops specific procedures and processes for the implementation of a
technology into the current production environment.

 Oversees implementation of technologies in production environment.

 Monitors and reviews how the new technology behaves in the
environment, troubleshoots and researches issues that arise and proposes
fixes to problems that arise in production.

 Interfaces with the application developers and customers to determine if
business needs are being met.

CDHS Web-Based Application Architecture Standards and Processes

Page 28 of 199 Version 3.0

Messaging

 Centralized e-mail, calendaring, public folder and faxing support and
administration for over 6700 CDHS staff and contractors.

 Provides assistance at the desktop level as well as the server level.

 Provide training on messaging software usage to CDHS staff.

LAB

 Provides a test bed for evaluating technology, isolating it from the
production network. See Appendix, Department of Health Services
Research Center (CDHSRC) Architecture and Design for more
information.

Help Desk

1. Call Receipt - Document/log all calls
2. Call Resolution or Call Routing (level 2)
3. Call Tracking until resolution
4. Call escalation
5. Hot incident Management
6. Call Closeout
7. Quality Assurance

CDHS Web-Based Application Architecture Standards and Processes

Page 29 of 199 Version 3.0

VVOOLLUUMMEE II II II :: PPRROOJJEECCTT IINNIITTIIAATTIIOONN

This volume describes the core business process that dictates the life cycle of a
project. You can obtain the most current information regarding project
management on the California Department of Health Services (CDHS) intranet at
http://itsd.int.dhs.ca.gov/Planning%20and%20Project%20Management/ or by
contacting the Information Technology Services Division (ITSD) Project and
Project Management Branch.

ITSD Services

Starting the process of building an application at CDHS is the most critical
element of deploying an application. Not following the proper procedures when
you start the project can result in extensive delays in project implementation. The
following documentation is designed to provide our consumers with procedures
for initiating projects in CDHS.

Project Management Approach

Each information technology project in the CDHS is subject to a variety of
approvals and adherence to State processes and procedures for initiation,
development, deployment and closure. The following summarizes the basic life
cycle.

Introducing the Project

The first step in developing a business application is to prepare a Project Concept
Paper. The level of detail in the concept paper should be commensurate with the
degree of complexity and potential risks associated with the proposed initiative.
This document is sent to the ITSD Planning and Oversight Section (POS) for
processing. POS staff will review it to determine if it is complete and if so, then
forward the document to the CDHS Chief Information Officer (CIO) and the
Deputy Director of Administration. The CIO reviews the document for technical
feasibility and the Deputy Director of Administration reviews the fiscal
feasibility. After their review, the document is presented to the Chief Deputy
Directors for their approval to proceed with the initiative.

After the concept is approved by the Chief Deputies, the Program completes the
appropriate type of feasibility study report (please see the table below). POS
provides the forms/templates for the appropriate documents. After all FSR
approvals are received, then the development and procurement phase can begin.

If the program’s proposed solution to meet a business need, problem, or an
opportunity has a total one-time IT cost of over $30,000, then the Program first

CDHS Web-Based Application Architecture Standards and Processes

Page 30 of 199 Version 3.0

completes an IT Project Concept Paper and obtains pre-approval from the
sponsoring Deputy Director.

⇒ Table V Project Reporting Requirements Summary

Project Criteria Type of
Document
Required

Approvals
Required

Follow-up
Reporting
Required after
approvals

Estimated total costs > $1,000,000
Or Requires a budget action
Or Legislatively mandated
Or Others as required

Feasibility
Study Report
(FSR)

Program
Deputy, CIO,
Budget
Office;
Director’s
Office,
Agency, DOF

Monthly status
reports to
Agency, POS
Independent
Project
Oversight
reports; PIER at
end of project

Cost > $50,000 but less than $1,000,000;
doesn’t require budget action; not legislatively
mandated;

Internal FSR
(IFSR)

Program
Deputy, CIO

Annual update
to strategic
planning
documents

Cost > $30,000 but less than $50,000; doesn’t
require budget action; not legislatively
mandated.

Abbreviated
IFSR (EZ
FSR)

Program
Deputy,
PPMB, CIO

None

The Internet to Extranet (I2E) committee will work with the Program and project
oversight entities on the architectural solutions that do not exist as an existing and
supported architecture. The I2E committee develops technical standards,
determining how to best implement new technologies while assisting CDHS staff
in developing and successfully implementing IT initiatives. The members of this
committee are knowledgeable in a broad spectrum of IT processes and tools. This
committee reviews the Concept Paper or the FSR to ensure that the proposed
solution complies with CDHS technical standards and best practices. This group
also initiates infrastructure enhancements or modifications ensuring project
success. You can obtain feedback from the members of the I2E committee
regarding design or project-related issues by sending an e-mail to CDHS
I2Eteam@dhs.ca.gov. You may be asked to be present at the regular meetings to
discuss issues and actions necessary to assist your project team in development,
testing and deployment phases.

There will be several meetings that must take place in order to get your project
approved by control entities and to get your project launched on time. You will
need to meet with members of the following groups within the ITSD throughout
the lifecycle of your project:

1. Network Infrastructure Unit (NIU) - concerning network bandwidth and
connectivity issues

2. Information Security Office (ISO)- regarding any possible confidentiality
and security issues

CDHS Web-Based Application Architecture Standards and Processes

Page 31 of 199 Version 3.0

3. Server Unit (NTSS) - for server specifications if your project requires new
servers

4. SQL Server Unit (SSU) - for database design, security standards, backup
and disaster recovery, auditing, monitoring, capacity planning and
performance tuning

5. Internet Unit (IU)- for web services (application, static, file transfer,
domain name registration, security, access, templates, site use reporting,
and server configuration standards)

6. Business Intelligence Unit (BI) - for business intelligence reporting
services and requirements

7. Client Technology Unit (CTU) - for workstation requirements
8. Application Support Branch (ASB) - for application development services

if ITSD will be developing your application
9. Planning and Project Management Branch (PPMB) - for project initiation

services, project reporting services, and project management best practices
10. Information Technology Help Desk - for support services
11. Exchange Unit – for messaging services
12. Data Guidance Unit (DGU) - for application processing, and
13. Administration - to discuss fund allocation and process orders.

The I2E team has members from a majority of the technical areas noted above.
Each group produces technical documents related to their area of expertise. ITSD
representatives will insist that you follow the procedures noted in initiating a
project prior to any commitment of resources.

Project Management Approach

The following information is extracted from a more detailed description of the
CDHS standard project management approach. The complete details are
available on the CDHS Intranet at
http://itsd.int.dhs.ca.gov/Planning%20and%20Project%20Management/ under a
heading of “CCDHS IT Project Framework”.

Concept Definition Process

In the Project Concept Definition phase, the purpose is to define at a high level
the objectives, benefits, and approach of the proposed IT project or opportunity.
Ideally, the data gathered provides management with the information necessary to
decide if the proposed project can be supported and whether further planning and
a feasibility study should be performed. If the project is not supportable, further
costs associated with developing the business case, feasibility study, and plans are
avoided.

CDHS Web-Based Application Architecture Standards and Processes

Page 32 of 199 Version 3.0

Activities

 Define concept

 Assess unmet needs

 Define business
problem/opportunity

 Define high-level scope

 Provide rough Order of
Magnitude (ROM) estimate
and schedule

 Compile Project Concept
Paper

 Obtain approval

Inputs

 Documented business
processes

 State, court, legislative
mandates

 CDHS Strategic Plan

Outputs

 Approved Project Concept
Paper

Tools & Templates

 IT Project Concept Paper Approval Process

 IT PC Instructions IT PC Paper

Initiation & Approval Process

The objective of the Project Initiation and Approval phase is to develop a
comprehensive business case, feasibility study, and a plan to address the IT
problem or opportunity. The results of the analysis and planning are used to
understand the justification, priority and resources required for the proposed
project. A key output, therefore, is the project and funding/spending approvals.
Since this phase may extend for a long period of time, a formal mid-phase
checkpoint review with the Sponsor is conducted in order to confirm the desire to
continue and complete this phase. For large projects, a Steering Committee is
formed to oversee the feasibility study and the report writing.

CDHS Web-Based Application Architecture Standards and Processes

Page 33 of 199 Version 3.0

Activities

 Develop hi-level business and technical requirements

 Perform Cost Benefit Analysis, alternative analysis

 Perform business process modeling

 Perform Feasibility Study

 Define recommended solutions

 Prepare planning estimate (EAW)

 Prepare IT Procurement Plan (ITPP)

 Checkpoint review with project Sponsor

 Develop Project Management Plan including high-level scope milestone
schedule, risk assessment

 Prepare/submit BCP and or Federal funding request if required

 Obtain IFSR/FSR, BCP and /or Federal funding approval

Inputs

 Approved IT Project Concept
Paper or equivalent

Outputs

 Approved IFSR/FSR (with
Project Plan & high-level
requirements)

 BCP/Federal funding (grant
request)

Tools & Templates

 IFSR-EZ Instructions

 IFSR-EZ Form

 Feasibility Study Report Preparation Instructions (FSR)

 IFSR TEMPLATE

 FSR-SPR Review and Approval Process

 CDHS EAW Guidelines

 EAW Workbook

 Project Org Chart

Security Review Process

The Information Security Office requires the completion of a questionnaire in the

CDHS Web-Based Application Architecture Standards and Processes

Page 34 of 199 Version 3.0

project initiation process. It is designed to assist the Information Security Office
in expediting the security review process. The questionnaire is to be submitted
with your IFSR/FSR/SPR. The current version of the questionnaire can be
obtained from:

http://itsd.int.dhs.ca.gov/planning%20and%20project%20management/Resources
%20Library/9%20ISO%20security%20questionnaire%2005-25-04.doc.

Web and Database Review Process

The Internet Unit (IU) and SQL Server Unit (SSU) require completion of a
questionnaire in the project design phase of the project. It is designed to assist the
support units in obtaining the information necessary to capture the project details
sufficiently to assist ITSD in identifying any web application hosting
requirements that may be unmet if not identified early in the project lifecycle.

Refer to the Appendix, Web and Database Hosting Questionnaire for a copy of
the questionnaire. The most current version of this document will be available in
this document.

CDHS Web-Based Application Architecture Standards and Processes

Page 35 of 199 Version 3.0

VVOOLLUUMMEE IIVV:: AARRCCHHIITTEECCTTUURREE BBAACCKKGGRROOUUNNDD

This volume addresses the various elements that CDHS security and technical
teams took into consideration in developing this standard. It is important to note
that the details of these considerations are partially influenced by the choice to
support Microsoft technologies as a standard platform for the CDHS web-based
application architecture. Thick-client or Windows Forms based applications may
not be consistent with all aspects of this architecture. Architectures will be
considered in the feasibility and design phases of CDHS projects.

This volume is designed for the infrastructure and application development teams
that will engage in deployment of applications for CDHS.

CDHS Web-Based Application Architecture Standards and Processes

Page 36 of 199 Version 3.0

Overview

CDHS has created an environment that allows for web based applications to be
hosted in a shared, secure environment. To accomplish this task a number of
configuration and environmental pieces are implemented.

The Department supports n-tier architecture. There are many benefits of
implementing an n-tier model from performance and security perspectives. An n-
tier model allows the flexibility of increasing servers in any zone to improve
performance. It also gives developers the ability to develop code for different
tiers at the same time allowing team development to take place.

Security in today’s enterprise computing environment has become one of the
major architecture influences. CDHS implements multiple levels of security to
protect its data leveraging the ability to provide isolation between tiers as is
consistent with the industry approach as depicted in the figure below.

⇒ Figure 1 Securing Web Applications

One major security enhancement that CDHS is implementing is the ability to take
advantage of Operating System (OS) security improvements provided by
deploying Windows servers in an Active Directory environment. Applications
and servers can be configured to use Integrated Windows Security allowing the
OS to manage the transmission of user credentials in a very secure manner.
ASP.NET applications can take advantage of role based security and a trusted
sub-system model. The ability to create security groups at the network level by

CDHS Web-Based Application Architecture Standards and Processes

Page 37 of 199 Version 3.0

creating Active Directory global groups within organizational units provides
enhanced security and ease of maintenance. By implementing a trusted sub-
system model performance enhancements are achieved by using connection
pooling between the application and data layers. Security is greatly improved at
the data layer by not allowing the end users to have access to the data directly.

Although an n-tier model may appear to be more complicated the benefits far
outweigh the drawbacks. The following material is designed to describe the
major elements of the CDHS architecture considerations and the logic behind the
selection of adopted methods.

User vs. Code Security

User security and code security are two complementary forms of security that are
available to .NET Framework applications. User security answers the questions,
"Who is the user and what can the user do?" while code security answers the
questions "Where is the code from, who wrote the code, and what can the code
do?" Code security involves authorizing the application's (not the user's) access to
system-level resources, including the file system, registry, network, directory
services, and databases. In this case, it does not matter who the end user is, or
which user account runs the code, but it does matter what the code is and is not
allowed to do.

The .NET Framework user security implementation is called role-based security.
The code security implementation is called code access security.

The figure below shows a logical view of how user security is typically used in a
web application to restrict user access to web pages, business logic, operations,
and data access.

⇒ Figure 2 Logical View of User (Role-Based) Security)

The figure below shows a logical view of how code access security is used in a
web application to constrain the application's access to system resources,
resources owned by other applications, and privileged operations, such as calling
unmanaged code.

CDHS Web-Based Application Architecture Standards and Processes

Page 38 of 199 Version 3.0

⇒ Figure 3 Logical View of Code-Based Security

Relationship between IIS and .NET Web
Applications

ASP.NET application security configuration and IIS security configuration are
completely independent and can be used independently or in conjunction with
each other. IIS maintains security related configuration settings in the IIS
metabase. ASP.NET maintains security (and other) configuration settings in
XML configuration files. While this generally simplifies the deployment of your
application from a security standpoint, the security model applied to your
application necessitates the correct configuration of both the IIS metabase and
your ASP.NET application via its configuration file (Web.config). The following
figure illustrates this concept.

⇒ Figure 4 IIS/ASP.NET Relationship

CDHS Web-Based Application Architecture Standards and Processes

Page 39 of 199 Version 3.0

As the figure depicts, there are two essential items that must be addressed in
granting access to users of an application, authentication and authorization. As
further demonstrated in the figure below and subsequently described, basic
authentication and authorization methods are available in the main application
layers.

⇒ Figure 5 Authentication and Authorization Methods in Main Application Layers

Authentication

Authentication is the process of the user proving they are who they say they are.
Web applications may utilize a combination of ASP.NET, Internet Information
Server (IIS) authentication, Enterprise Services, and SQL authentication. When
IIS authentication is complete, ASP.NET uses the authenticated identity to
authorize access.

IIS Authentication

The following discusses the various authentication methods that IIS supports.

Basic: Used for non-secure identification of clients, as the user name
and password are sent in base64-encoded strings in plain text. Passwords
and user names are encoded, but not encrypted, in this type of
authentication. A determined, malicious computer user equipped with a
network-monitoring tool can intercept user names and passwords.

CDHS Web-Based Application Architecture Standards and Processes

Page 40 of 199 Version 3.0

Basic over SSL: Used for secure identification of clients in Internet
scenarios. The user name and password are sent over the network using
Secure Sockets Layer (SSL) encryption, rather than plain text. This is
works for Internet scenarios. SSL degrades performance.

Digest: Used for secure identification of clients in Internet scenarios
but available only on domain controllers in Windows 2000, but is not the
case in Windows 2003 Digest or Advanced Digest. This requires the use
of domain accounts. Uses hashing to transmit client credentials in a
secure manner so the password is not transmitted in clear text. In addition,
Digest authentication can work through proxy servers. However, it is not
widely supported on other platforms.

Integrated Windows Authentication: Uses NTLM or
Kerberos with a cryptographic exchange with the user's Microsoft Internet
Explorer web browser.

Anonymous: Anonymous access requires no authentication
whatsoever. Anonymous access is used for web sites when you want
unauthenticated users to be able to access the information provided by the
web sites and applications

ASP.NET Authentication

The following discusses the various authentication methods that ASP.NET
supports.

Windows Authentication: ASP.NET uses Windows
authentication in conjunction with IIS authentication. Authentication is
performed by IIS. When IIS authentication is complete, ASP.NET uses
the authenticated identity to authorize access.

Forms: Forms authentication generally refers to a system in which
unauthenticated requests are redirected to an HTML form, using HTTP
client-side redirection. Forms authentication is a good choice if your
application needs to collect its own user credentials at logon time through
HTML forms. The user provides credentials and submits the form. If the
application authenticates the request, the system issues a form that
contains the credentials or a key for reacquiring the identity. Subsequent
requests are issued with the form in the request headers. They are
authenticated and authorized by an ASP.NET handler using whatever
validation method the application specifies.

CDHS Web-Based Application Architecture Standards and Processes

Page 41 of 199 Version 3.0

Passport Authentication: Passport authentication is a centralized
authentication service provided by Microsoft that offers a single logon and
core profile services for member sites. This benefits the user because it is
not necessary to log on to access new protected resources or sites.

SQL Authentication

Windows Authentication: User's network security attributes are
established at network login time and are validated by a Windows domain
controller or a member or stand alone server via the local SAM. When a
network user tries to connect, SQL Server uses Windows-based facilities
to determine the validated network user name. SQL Server then verifies
that the person is who they say they are, and then permits or denies login
access based on that network user name alone, without requiring a
separate login name and password.

SQL Server Authentication: When a user connects with a
specified login name and password from a non-trusted connection, SQL
Server performs the authentication itself by checking to see if a SQL
Server login account has been set up and if the specified password
matches the one previously recorded. If SQL Server does not have a login
account set, authentication fails and the user receives an error message.
This occurs by defining how authentication will occur for the provider.

Authentication Decision Points

The following is a list of decision points typically used by organizations in
adopting authentication methods:

 Do users have to log in? Is a user name and password required to access
the site or service?

 Is personalization required? Will the site provide personalized content,
without requiring the users to log on?

 User account storage? Are user accounts stored in Windows NT domain
accounts, Active Directory, or are they stored in some other data store, for
example a relational database, an alternate LDAP (Lightweight Directory
Access Protocol) directory service, or an XML file?

 Is single sign-on or seamless logon required? Do you want the users to log
on from a logon page, or do you need authentication to happen
automatically? For example, you may require automatic authentication for
an automated Business-to-Business (B2B) transaction.

CDHS Web-Based Application Architecture Standards and Processes

Page 42 of 199 Version 3.0

 Do you need to make the system extremely hard for hackers to steal user
names and passwords over the network? This decision is typically made
based on the sensitivity of the data available on the site.

 Will the application run on the Internet? Will the application be behind a
firewall, where users are not authenticated to a domain, or will the
application be intranet-based where the end users may already be
authenticated to a domain?

 Do you need to delegate security context? Do you need business
components to run with the caller's identity? If so, impersonation is
required. Furthermore, if you need to access system resources such as
message queues, databases, or file systems on remote computers, delegate-
level impersonation will be required.

 Are servers and clients running the same operating system, such as
Windows 2000/2003? Are you running a homogeneous environment of
computers?

Role-Based Authorization

Authorization is the process of determining whether the proven identity is allowed
to access a specific resource. Once authentication and authorization occur, a user
has access to the authorized resources. For the user to perform any action they
must have the proper authorization.

There are two main authorization models in a .NET environment. These two
models are role based and resource based. CDHS took into consideration
flexibility and scalability when determining that the role-based model is most
appropriate for the infrastructure.

Role Based

Access to operations (typically methods) is secured based on the role membership
of the caller. Roles are used to partition your application's user base into sets of
users that share the same security privileges within the application; for example,
Senior Managers, Managers and Employees .Users are mapped to roles and if the
user is authorized to perform the requested operation, the application uses fixed
identities with which to access resources. These identities are trusted by the
respective resource managers (for example, databases, the file system and so on).

.NET Framework role-based security is a key technology that is used to authorize
a user's actions in an application. Roles are often used to enforce business rules.
For example, a financial application might allow only managers to perform
monetary transfers that exceed a particular threshold.
Role-based security consists of the following elements:

CDHS Web-Based Application Architecture Standards and Processes

Page 43 of 199 Version 3.0

• Principals and identities
• PrincipalPermission objects
• Role-based security checks
• URL authorization

Resource Based

The resource-based approach to authorization relies on Windows ACLs and the
underlying access control mechanics of the operating system. The application
impersonates the caller and leaves it to the operating system in conjunction with
specific resource managers (the file system, databases, and so on) to perform
access checks.

Methods for Achieving Authorization

In the CDHS environment two main methods of authorization applied as
supportable authorization methods:

1. Trusted Sub-System
2. Impersonation/Delegation

The trusted sub-system model is generally used for larger applications where
performance is a major issue. The impersonation/delegation model is used for
smaller applications that might not need the performance gains of the first model.
In general, the impersonation/delegation model is less complicated to implement.
However, the need to address scalability in the CDHS environment is imperative.

The recommended and common pattern for role-based authorization is:

 Authenticate users within your front-end web application.

 Map users to roles via active directory.

 Authorize access to operations (not directly to resources) based on role
membership.

 Access the necessary back-end resources (required to support the
requested and authorized operations) by using fixed service identities.

The back-end resource managers (for example, databases) trust the application to
authorize callers and are willing to grant permissions to the trusted service
identity or identities. For example, a database administrator may grant access
permissions exclusively to a specific HR application (but not to individual users).

CDHS Web-Based Application Architecture Standards and Processes

Page 44 of 199 Version 3.0

Trusted Sub-System Model

In a Trusted Subsystem Model the original identity of the user is checked at the
IIS/ASP.Net gate, mapped to a role in and through active directory, then
authorized based on role membership of the user. System resources for the
application are then authorized at the application or role level.

A Trusted Subsystem Model controls access between the application and data
tiers. The security context of the original caller does not flow through the service
at the operating system level, although the application may choose to flow the
original caller's identity at the application level. It may need to do so to support
back-end auditing requirements, or to support per-user data access and
authorization. The database trusts the application tier to authorize users and allow
only authorized users to access the database using a trusted identity.

This model uses fixed accounts to access the resource being requested. When the
user first logs into the application they are mapped to a role. When the user
requests a resource, such as SQL Server, the role is checked and the resource is
accessed by the fixed account mapped to the user’s role. The image below shows
an application using a multi-account setup.

⇒ Figure 6 Trusted Sub-System Model for Authorization Based on Roles

Advantages of the Trusted Sub-System Model

1. Scalability: The trusted subsystem model supports connection pooling, an
essential requirement for application scalability. Connection pooling
allows multiple clients to reuse available, pooled connections. It works
with this model because all back-end resource access uses the security
context of the service account, regardless of the caller's identity.

2. Minimizes Back-End ACL Management: Only a service account accesses
back-end resources (for example, databases). ACLs are configured against
this single identity.

CDHS Web-Based Application Architecture Standards and Processes

Page 45 of 199 Version 3.0

3. Users Can't Access Data Directly: In the trusted-subsystem model, only
the middle-tier service account is granted access to the back-end
resources. As a result, users cannot directly access back-end data without
going through the application (and being subjected to application
authorization).

Disadvantages of the Trusted Sub-System Model

1. Auditing: To perform auditing at the back end, you can explicitly pass (at
the application level) the identity of the original caller to the back end, and
have the auditing performed there. You must trust the middle-tier and have
a potential repudiation risk. Alternatively, you can generate an audit trail
in the middle tier and then correlate it with back-end audit trails (for this
you must ensure that the server clocks are synchronized).

2. Increased Risk from Server Compromise: In the trusted-subsystem model,
the middle-tier service is granted broad access to back-end resources. As a
result, a compromised middle-tier service potentially makes it easier for an
attacker to gain broad access to back-end resources.

Impersonation / Delegation

With this model, a service or component (usually somewhere within the logical
business services layer) impersonates the client's identity (using operating system-
level impersonation) before it accesses the next downstream service. If the next
service in line is on the same computer, impersonation is sufficient. Delegation is
required if the downstream service is located on a remote computer as shown in
the image below.

⇒ Figure 7 Impersonation/Delegation

The suggested approach when using this model is to create a Windows group or
groups. For example, if we were to look at the reporting scenario again the user
would log into the application in the same manner as with the Trusted Sub-
system. A Windows group is created to house all users that need access to the
reports. The Windows group is added to SQL Server and given read access to the

CDHS Web-Based Application Architecture Standards and Processes

Page 46 of 199 Version 3.0

report data. When the user accesses the reports their credentials are used rather
than a fixed account as in the Trusted Sub-system model.

Advantages of the Impersonation / Delegation

1. The primary advantage of the impersonation / delegation model is auditing
(close to the data). Auditing allows administrators to track which users
have attempted to access specific resources. Generally auditing is
considered most authoritative if the audits are generated at the precise time
of resource access and by the same routines that access the resource.

2. The impersonation / delegation model supports this by maintaining the
user's security context for downstream resource access. This allows the
back-end system to authoritatively log the user and the requested access.

3. Code that accesses data cannot specify the security context therefore, a
system that is compromised cannot access data based upon a different
account and only based upon the current security context of the process.

Disadvantages of the Impersonation / Delegation

1. Technology challenges: Most security service providers don't support
delegation, Kerberos is the notable exception. Processes that perform
impersonation require higher privileges (specifically they act as part of the
operating system privilege). (This restriction applies to Windows 2000
Server and will not apply to Windows 2003 Server).

2. Scalability: The impersonation / delegation model means that you cannot
effectively use database connection pooling, because database access is
performed by using connections that are tied to the individual security
contexts of the original callers. This significantly limits the application's
ability to scale to large numbers of users.

3. Administration Effort: ACLs on back-end resources need to be
maintained in such a way that each user is granted the appropriate level of
access. When the number of back-end resources increases (and the number
of users increases), a significant administration effort is required to
manage ACLs.

Authorization Decision Points

The following is a list of decision points typically used by organizations in
adopting authentication methods:

 Where should I perform authorization and what mechanisms should I use?

 What authentication mechanism should I use?

CDHS Web-Based Application Architecture Standards and Processes

Page 47 of 199 Version 3.0

 Should I use Active Directory® directory service for authentication or
should I validate credentials against a custom data store?

 What are the implications and design considerations for heterogeneous
and homogenous platforms?

 How should I represent users who do not use the Microsoft® Windows®
operating system within my application?

 How should I flow user identity throughout the tiers of my application?
When should I use operating system level impersonation/delegation?

Code Access Security

Code Access Security (CAS) is the process of allowing the administrator to
control the level of permission granted to a given assembly based on the origin of
the identity and origin of the assembly. CAS provides very granular control over
which resources the code has access to. CAS gives the administrator the ability to
isolate applications from one another. By controlling the security based on the
code and not the user executing the code enhances security a great deal.

Code access security is a mechanism that helps limit the access code has to
protected resources and operations. In the .NET Framework, code access security
performs the following functions:

 Defines permissions and permission sets that represent the right to access
various system resources.

 Enables administrators to configure security policy by associating sets of
permissions with groups of code (code groups).

 Enables code to request the permissions it requires in order to run, as well
as the permissions that would be useful to have, and specifies which
permissions the code must never have.

 Grants permissions to each assembly that is loaded, based on the
permissions requested by the code and on the operations permitted by
security policy.

 Enables code to demand that its callers have specific permissions.

 Enables code to demand that its callers possess a digital signature, thus
allowing only callers from a particular organization or site to call the
protected code.

 Enforces restrictions on code at run time by comparing the granted
permissions of every caller on the call stack to the permissions that callers
must have.

 To determine whether code is authorized to access a resource or perform
an operation, the runtime's security system walks the call stack, comparing

CDHS Web-Based Application Architecture Standards and Processes

Page 48 of 199 Version 3.0

the granted permissions of each caller to the permission being demanded.
If any caller in the call stack does not have the demanded permission, a
security exception is thrown and access is refused. The stack walk is
designed to help prevent luring attacks, in which less-trusted code calls
highly trusted code and uses it to perform unauthorized actions.
Demanding permissions of all callers at run time affects performance, but
it is essential to help protect code from luring attacks by less-trusted code.
To optimize performance, you can have your code perform fewer stack
walks; however, you must be sure that you do not expose a security
weakness whenever you do this. The following figure illustrates the stack
walk that results when a method in Assembly A4 demands that its callers
have permission P.

⇒ Figure 8 Security Stack Walk

Understanding CAS

In a less secure but easier support model, principal-based security is often used
and authorization is based on the identity of the user. This means that if an
administrator launches an application it has full rights on the local machine.
Unfortunately, if the administrator's identity is spoofed and a malicious user is
able to execute code using the administrator's security context, the malicious user
also has no restrictions. This is where code access security is important because it
can provide additional restrictions and security based on the code itself, rather
than the user running the code.

In the CDHS environment CAS is used to provide application isolation. This is
very important because many of the Department’s web servers are shared or are in
a shared security zone. Code on these servers is written by internal developers,
contracted vendors and third-party commercial developers. Application isolation
provides the following features:

CDHS Web-Based Application Architecture Standards and Processes

Page 49 of 199 Version 3.0

 Isolate applications from each other. For example, code access security
can be used to ensure that one Web application cannot write to another
Web application's directories.

 Isolate applications from system resources. For example, code access
security can restrict access to the file system, registry, event logs, and
network resources, as well as other system resources.

.NET Built in Code Access Permissions Classes

The .NET Framework has many built-in code access permission classes that are
designed to protect access to system resources. The built-in permission classes
are listed in the following table.

Code access permission class Resource protected

DirectoryServicesPermission Directory services
DnsPermission DNS services
EnvironmentPermission Environment variables
EventLogPermission Event logs
FileDialogPermission File dialog boxes in the UI
FileIOPermission Files and folders on the file system
IsolatedStorgeFilePermission Isolated storage
MessageQueuePermission Message queues
OleDbPermission Databases accessed by the OLE DB

data access provider

Code access permission class Resource protected
PerformanceCounterPermission Performance counters
PrintingPermission Printers
ReflectionPermission Type information at run time
RegistryPermission Registry
SecurityPermission Execute code, assert permissions,

call unmanaged code, skip
verification, and other rights

ServiceControllerPermission Running or stopping services
SocketPermission Connections to other computers via
sockets
SqlClientPermission Databases accessed by the Microsoft

SQL Server™ data access provider
UIPermission Windows and other UI elements
WebPermission Connections to other computers via
HTTP

Although CAS provides a great deal of additional security, web applications are
set to full trust by default. This means that all code has full rights by default. To

CDHS Web-Based Application Architecture Standards and Processes

Page 50 of 199 Version 3.0

restrict what the code can do, modifications to a .config file must be made. To
modify code access security trust levels in ASP.NET, a switch in the
machine.config or web.config is set and the application is configured as a partial-
trust application. The following table lists the predefined trust levels for an
ASP.NET application:

⇒ Table VI ASP.NET CAS Trust Levels

ASP.NET
Trust Level

Main Restrictions

Full Unrestricted permissions. Applications can access any resource
that is subject to operating system security. All privileged
operations are supported.

High Not able to call unmanaged code
Not able to call serviced components
Not able to write to the event log
Not able to access Microsoft Message Queuing queues
Not able to access OLE DB data sources

Medium In addition to the above, file access is restricted to the current
application directory and registry access is not permitted.

Low In addition to the above, the application is not able to connect to
SQL Server and code cannot call CodeAccessPermission.Assert
(no assertion security permission).

Minimal Only the execute permission is available.

Each trust level is mapped to an individual XML policy file that controls the
permissions granted to each trust level. The code access security policy is
hierarchical and is administered at multiple levels. Policy can be created for the
enterprise, machine, user, and application domain levels. ASP.NET code access
security policy is an example of application domain-level policy.
Settings in a separate XML configuration file define the policy for each level.
Enterprise, machine, and user policy can be configured using the Microsoft .NET
Framework configuration tool, but ASP.NET policy files must be edited manually
using an XML or text editor.

The individual ASP.NET trust-level policy files identify which permissions might
be granted to applications configured for a particular trust level. The actual
permissions that are granted to an ASP.NET application are determined by
intersecting the permission grants from all policy levels, including enterprise,
machine, user, and ASP.NET (application domain) level policy.
Because policy is evaluated from enterprise level down to ASP.NET application
level, permissions can only be taken away. You cannot add permission at the
ASP.NET level without a higher level first granting the permission. This approach
ensures that the enterprise administrator always has the final say and that
malicious code that runs in an application domain cannot request and be granted
more permissions than an administrator configures.

CDHS Web-Based Application Architecture Standards and Processes

Page 51 of 199 Version 3.0

The CDHS environment is configured in an n-tier model. The application server
houses all business logic via web services. Because of this fact, CAS policies are
configured on both the web server and the application server. This is
accomplished by setting the security via the machine.config. The default standard
for the ASP.NET policy permission is set to a trust level of medium. Below is a
table that lists the security settings allowed with a medium trust level set.

⇒ Table VII CAS Medium Permission State Settings

Permission and State Medium
AspNetHosting
 Level

Medium

DnsPermission
 Unrestricted

3

EnvironmentPermission
 Unrestricted
 Read
 Write

TEMP; TMP;
USERNAME; OS;
COMPUTERNAME

EventLogPermission
FileIOPermission
 Unrestricted
 Read
 Write
 Append
 PathDiscovery

$AppDir$
$AppDir$
$AppDir$
$AppDir$

IsolatedStorageFilePermission
 Unrestricted
 AssemblyIsolationByUser-
 Unrestricted UserQuota

3
3

OleDbClientPermission
 Unrestricted

PrintingPermission
 Unrestricted
 DefaultPrinting

3

ReflectionPermission
 Unrestricted
 ReflectionEmit

RegistryPermission
 Unrestricted

SecurityPermission
 Unrestricted
 Assertion
 Execution
 ControlThread
 ControlPrinicipal
 RemotingConfiguration

3
3
3
3
3

CDHS Web-Based Application Architecture Standards and Processes

Page 52 of 199 Version 3.0

Permission and State Medium
SocketPermission
 Unrestricted

SqlClientPermission
 Unrestricted

3

WebPermission
 Unrestricted

$OriginHost$

Setting a trust level of medium allows the applications and web services to run
without having full access to privileged operations. This provides two major
advantages: a reduced attack surface and application isolation. Since medium
trust does not grant the application unrestricted access to all permissions, the
attack surface is reduced by granting the application a subset of the full
permission set. Many of the permissions granted by medium trust policy are also
in a restricted state. If an attacker is somehow able to take control of the
application, the attacker is limited in what he or she can do.

By restricting ASP.NET applications from having full access it makes
compromising an application or running malicious code much more difficult.
Configuring the machine.config makes it possible to enforce that all code running
on the web server and application server maintain a minimum level of security.
Again, this is important in a shared environment where code is being developed
via a number of sources.

Data Access Layer

The Data Access Layer (DAL) forces application communication with the
database to occur via stored procedures. The DAL provides methods for querying
and updating the information stored in the database. The DAL creates an
interface to the data allowing an application to have a simple programmatic way
to retrieve and perform operations on the data. Each data access logic component
typically provides methods to perform Create, Read, Update, and Delete (CRUD)
operations relating to a specific business entity in the application (for example,
order). These methods may be used by the business processes. Specific queries
may be used by the user interface to render reference data (such as a list of valid
counties). The following image illustrates a typical Data Access Layer (DAL).

CDHS Web-Based Application Architecture Standards and Processes

Page 53 of 199 Version 3.0

⇒ Figure 9 Typical Data Access Layer

For example, if a user wants to update a record in the database a web service is
called to complete the request. The DAL is passed the connection string, stored
procedure name and any parameters that may be needed. The user’s credentials
are checked within the application layer. If the user belongs to a group that has
appropriate rights, the DAL is invoked. If the user is not authorized then the
request is denied.

SQL Server Injections

A SQL injection is a term describing the act of passing SQL code into an
application that was not intended by the developer. They result from poor
validation and coding practices that may result in the breach of a database. By
using the data access layer and forcing use of stored procedures the threat of SQL
injections is removed.

SQL injections are usually caused by using "string-building" techniques in order
to execute SQL code. An example of this method of coding is listed below.

Set myRecordset = myConnection.execute("SELECT * FROM myTable WHERE
someText ='" & request.form("inputdata") & "'")

If someone wanted to cause some form of malicious code to run they could simple
alter the code being sent to the database server. If the code or application was
being executed by an account with a high security level (ex. SA, DBO) then the
injection could potentially cause a great deal of harm. The following code
demonstrates this.

CDHS Web-Based Application Architecture Standards and Processes

Page 54 of 199 Version 3.0

Set myRecordset = myConnection.execute("SELECT * FROM myTable WHERE
someText =’ ’ insert code that was not written by developer.)

By simply adding single quotes a hacker can cause the SQL Statement to change
and bypass the original code. Next, the replacement code begins to execute.

Another problem resulting in the use of in-line SQL Statements is associated with
database searches from an application. If the developer uses in-line SQL
Statements to perform a search that uses a number rather than a string and does
not perform a data input check, a SQL Statement can be injected. Often times the
SQL statement that is injected gets executed. This causes an action to take place
that was not intended by the developer.

Web Services vs. Remoting

Over time, it has become common practice to build applications as a set of
components that are distributed across a network of machines and work together
as part of one overall program. Browser-based Web applications, in contrast, are
loosely coupled and remarkably interoperable. They communicate using HTTP to
exchange MIME-typed data in a wide range of formats. Web services adapt the
traditional web programming model for use from all sorts of applications, not just
browser-based ones. They exchange SOAP messages using HTTP and other
Internet protocols. Because web services rely on industry standards, including
HTTP, XML, SOAP and WSDL, to expose application functionality on the
internet, they are independent of programming language, platform and device.

The ASP.NET Web services infrastructure provides a simple API for web
services based on mapping SOAP messages to method invocations. The clients of
ASP.NET Web services do not have to know anything about the platform, object
model, or programming language used to build them. The services themselves
don't have to know anything about the clients that are sending them messages.
The only requirement is that both parties agree on the format of the SOAP
messages being produced and consumed, as defined by the Web service's contract
definition expressed using WSDL and XML Schema (XSD).

.NET Remoting provides an infrastructure for distributed objects. It exposes the
full-object semantics of .NET to remote processes using plumbing that is both
very flexible and extensible. In order to use .NET Remoting, a client needs to be
built using .NET.

The .NET Framework includes support for two distinct distributed programming
models, web services and distributed objects.

The major differences between Remoting and XML Web services

CDHS Web-Based Application Architecture Standards and Processes

Page 55 of 199 Version 3.0

⇒ Table VIII Remoting vs. Web Services

Remoting Web Services
State full or stateless, lease-based object
lifetime management

All method calls are stateless

No need for IIS
(Although hosting in IIS/ASP.NET is
recommended for security)

Must have IIS installed on the server

All managed types are supported Limited data types are supported. For more
information about the types supported by
ASP.NET Web services, see the .NET
Framework Developer's Guide on MSDN.

Objects can be passed by reference or by
value

Objects cannot be passed

Contains an extensible architecture not
limited to HTTP or TCP transports

Limited to XML over HTTP

Can plug custom processing sinks into the
message processing pipeline

No ability to modify messages

SOAP implementation is limited and can
only use RPC encoding

SOAP implementation can use RPC or
document encoding and can fully
interoperate with other Web service
platforms.
For more information, see the "Message
Formatting and Encoding" section of the
Distributed Application Communication
article on MSDN.

Tightly coupled Loosely coupled

Web Services

Web services are the fundamental building blocks in the move to distributed
computing on the Internet. Open standards and the focus on communication and
collaboration among people and applications have created an environment where
XML Web services are becoming the platform for application integration.
Applications are constructed using multiple XML Web services from various
sources that work together regardless of where they reside or how they were
implemented. Web services are software services exposed on the web through
SOAP, described with a WSDL file and registered in UDDI.

CDHS Web-Based Application Architecture Standards and Processes

Page 56 of 199 Version 3.0

The following table summarizes web services:

⇒ Table IX Web Services Overview

Web services build on the loose coupling of the traditional Web programming
model, and extend it for use in other kinds of applications. There are three major
differences between Web services and traditional Web applications: Web services
use SOAP messages instead of MIME messages, Web services are not HTTP-
specific, and Web services provide metadata describing the messages they
produce and consume.
Microsoft’s web services use standard web protocols such as HTTP, and data
description languages such as XML, to exchange data over common ports,
utilizing the HTTP infrastructure support that is already in place.
SOAP – Is a simple, XML-based protocol for exchanging structured and type
information on the Web. The protocol contains no application or transport
semantics, which makes it highly modular and extensible.
The SOAP Protocol format is standardized, so any application that understands
SOAP can take advantage of Web Services.
Web Services Description Language (WSDL) - An XML-based contract language
for describing network services offered by a server. This description includes
details such as where we find the Web Service, what methods and properties that
service supports, the data types, and the protocols used to communicate with the
service. Tools can consume the WSDL, and build a proxy objects that clients use
to communicate with the web services.

Web Services can be written in any of the .NET supported languages. The two
most popular Microsoft languages are VB.NET and C#.

CDHS Web-Based Application Architecture Standards and Processes

Page 57 of 199 Version 3.0

VVOOLLUUMMEE VV:: AAPPPPLLIICCAATTIIOONN AARRCCHHIITTEECCTTUURREE

This volume addresses the web based application architecture details. This
includes the logical model, the physical implementation environment, coding
practices and security requirements. It is critical to note that the logical model is
applicable regardless of hosting location1, however, these standards specifically
address the implementation aspects of using Microsoft technologies in the CDHS
environment or alternative hosting locations when using Microsoft technologies.

This volume is designed for the infrastructure and application development teams
that will engage in deployment of applications for CDHS.

1 It is important to note that the Information Security Policy should be read prior to hosting any
information or application at an alternative location as there are requirements in doing this.

CDHS Web-Based Application Architecture Standards and Processes

Page 58 of 199 Version 3.0

Section I Application Architecture Overview

 CDHS has adopted industry standard architectures and continues to update the
underlying infrastructure to stay current with changing technologies to avoid
technology obsolescence. The core application architecture specifications are
based on current technology, security requirements/considerations, management
and performance. It is important to note that the Department has aligned its
expertise and products with the Microsoft technologies, however, the logical
design requirements must be adhered to regardless of product, hosting site and
expertise.

New applications for CDHS must utilize this architecture in order to minimize
deployment issues in the CHDS infrastructure. Outsourced application
development efforts to be hosted at CDHS will be introduced in the lab, then the
test and production environments and must use the same architectural model for
design, development and deployment.

CDHS is aware of the resources and skill required to develop in the adopted
model and accepts the business benefits of standardization to long-term viability
of its applications. These benefits include, but are not limited to: increased data
security, standard audit mechanisms, economy-of-scale by sharing resources and
expertise, and logical and physical separation of business functions. Other
benefits of a standardized development/infrastructure model include reduced costs
through increased maintainability, increased opportunities to re-use components,
and the increased ability to share data among programs. This separation of
business functions includes the isolation of the presentation and business layer
components simplifying upgrades and improving security.

The development and implementation of applications requires a lot of knowledge
and expertise about the host environment. CDHS’ ITSD can provide services to
assist developers utilizing these standards to meet security and business
requirements. For example, server build specifications, environment diagrams,
desktop specifications, stored procedure generation, business layer component
development, testing, design review, and hosting services are available. CDHS’
ITSD often has instructional material and code samples for anyone that needs
additional information developing systems based on this model.

CDHS has several web, application and database servers available for Programs
to use that are already covered in ITSD operating costs, are maintained to support
current industry standards and meet CDHS’ security standards. These web
servers exist in each of the segments available (Internet, Extranet & Intranet).
There are also separate web servers available for development, test and
production.

CDHS Web-Based Application Architecture Standards and Processes

Page 59 of 199 Version 3.0

Section II Before Getting Started

Developer Orientation

CDHS recognizes that developers inexperienced with the Departments
infrastructure face technical challenges in getting started and fulfilling the core
requirements. Based on our experience, first time CDHS developers have the
highest risk of misinterpreting these standards, causing extra development work
for the developer and infrastructure support staff.

CDHS offers a three-hour mandatory course explaining the CDHS hosting
environment and standards. The objective is to assist developers in ensuring that
applications are developed in accordance with these standards. This course not
only helps first time developers understand the environment but also helps them
understand why certain decisions have been made. This assists in ensuring
successful project completion within estimated project timelines by eliminating
conflicts with CDHS development standards.

This course will be offered monthly. To register, submit a request to the Internet
Unit via your ITSD project manager

Third-Party Components

Third-party components are often used in development of projects for efficiency.
The ITSD requires that these components be identified in the design phase and
they must be reviewed and approved prior to procurement. The following
additional requirements apply:

1. The components must be consistent with these standards.
2. The source code must be purchased with the components.
3. Maintenance agreements must be purchased when possible.
4. Funding must be available to upgrade or replacement obsolete or

unsupported components.
5. Products must be purchased from companies demonstrating long-term

viability.

Commercial Solutions Selections

The delivery of full business solutions often requires the integration of multiple
products. The selection of commercial products in the development of a complete
business solution requires the review and approval of ITSD. The alternative

CDHS Web-Based Application Architecture Standards and Processes

Page 60 of 199 Version 3.0

products and architectures are to be identified in the Design phase and acceptance
by ITSD is required before procurement is conducted.

CDHS Web-Based Application Architecture Standards and Processes

Page 61 of 199 Version 3.0

Section III Logical Architecture

Logical Model

The figure below, Logical Application Architecture, presents the logical view of
the standard application architecture and is applicable to any project developed
on behalf of CDHS. Subsequent sections define each of the logical layers and the
role they perform.

⇒ Figure 10 Logical Application Architecture

By separating the code into layers CDHS creates the opportunity to modify the
user interface separately from the rest of the code. This should give custom
applications a longer “shelf life” within the Department.

End User

Most new applications developed for CDHS are being built using web-based
technologies. The preference is based on the flexibility in providing access to
distributed clients. The advantages of this thin client architecture with regard to
client deployment, client resources, remote client access and standardized
approach have been realized many times over. That does not mean, however, that
all applications must be developed within this architecture.

The web client provides the mechanism for the customer to conduct
communications with CDHS. CDHS has standardized on the Microsoft Windows
client platform with Internet Explorer as the browser2. Any application that
involves non-CDHS approved clients must be designed to support industry-
leading browsers that include support of the .NET framework. Applications
should not require client side components (ActiveX or Java Applets). If a client
side component is necessary, prior authorization must be obtained.

2 The development team should query the Client Technology Unit within the Information
Technology Services Division to identify the lowest level browsers supported in the enterprise for
employee accessed web applications. If a specific business unit will use the application, the local
LAN Administrator should be contacted for this information For business partners, applications
may use the lowest level browser supported by the customer. For public sites, State of California
minimum requirements must be addressed.

CDHS Web-Based Application Architecture Standards and Processes

Page 62 of 199 Version 3.0

Presentation Layer

The application model that CDHS has chosen to implement separates the
presentation layer from the business layer components. The presentation layer
typically contains graphics and the user interface.

For publicly accessible web sites, developers must adhere to the current CDHS
implementation of the required State of California templates. Contact the Internet
Unit for the current specifications.

Application/Business Logic Layer

The application layer components must be on a separate web server and exposed
via web services. These application layer components should do the majority of
work when it comes to implementing and enforcing the business processes that
surround the application.

There are several different ways to implement the application layer technologies,
but CDHS will only provide support for Web Services implemented on the
Microsoft platform. Obtaining approval of your application design from the
CDHS ITSD-IMAS Section through the reporting processes before coding will
ensure that your application design will be supported through deployment

If you need to load support libraries for you web services components, please
check with the Internet Unit to determine availability of existing components and
compatibility of proposed components for the environment.

Data Access Layer

This layer is responsible for making the connection to the database server. This
layer is also responsible for auditing user access to data (since all data requests for
data must come through this layer). CDHS provides access to the data layer
components using Microsoft’s standard application blocks for web-based projects
that access enterprise databases. The CDHS data access layer component has
accompanying documentation and example applications using the
Microsoft.ApplicationBlocks.Data.DLL

Data Layer

The data layer consists of Microsoft SQL Server products with the latest service
packs and hot fixes. The data layer contains stored procedures configured to
create, read, update and delete (CRUD) data.

The development and implementation of applications requires a lot of knowledge
and expertise about the host environment. CDHS’ ITSD can provide services to

CDHS Web-Based Application Architecture Standards and Processes

Page 63 of 199 Version 3.0

assist developers utilizing the standard models to meet security and business
requirements. For example, server build specifications, environment diagrams,
desktop specifications, stored procedure generation, business layer component
development, testing, design review, and hosting services are available. CDHS’
ITSD also has instructional material and code samples for anyone that needs
additional information developing systems based on this model.

CDHS Web-Based Application Architecture Standards and Processes

Page 64 of 199 Version 3.0

Section IV ITSD Hosted Application Infrastructure

CDHS’ ITSD provides several services and resources to assist in developing and
deploying an application meeting CDHS standards for applications. In addition to
the infrastructure identified below, application design and development services
are offered.

Distinct Security Zones to Meet Business
Requirements

The network infrastructure is organized into three main security segments and the
location of the user application is based upon who will access the application.
The three segments are defined below:

Intranet - The internal CDHS network, accessible only by authorized CDHS
staff. The Intranet zone is used by CDHS staff directly connected to the internal,
private network. This includes the multiple locations that are directly connected
to the CDHS LAN/WAN.

Extranet - An area of the network used primarily by non-CDHS staff, whose
identity can be specifically identified and authorized for necessary levels of
access. Access to the Extranet over public networks requires all communications
to be encrypted at a minimum of 128-bits. CDHS business partners typically use
this segment by connecting over the public Internet or the CDHS LAN/WAN and
provide authentication information such as user names and passwords or
certificates, to access their application. The Extranet segment is further
subdivided into four isolated zones that provide additional separation between
web, application, other interfaces and database servers.

Internet - An area of the network accessible by anyone, whose identity may not
be confirmed, and communications may or may not be encrypted. The Internet
zone is typically used by the general public, connected over the public Internet.
This zone will not contain or allow access to any data that is not supposed to be
publicly available.

Please note that in some cases the application will need to utilize more than one
segment of the infrastructure. This usually depends on the data access
requirements, standards, and the type of users accessing the application business
logic and data. For example, it is possible to have an business requirement to
have CDHS personnel populating a database in the Intranet and have non-CDHS
users viewing and reporting against a portion of this data. In this scenario, there
is a need to develop and install application interfaces and components in both the
Intranet and the Extranet or Internet zones. Since data must be accessible via
multiple interface locations, application developers must design for this scenario.
Infrastructure support staff must be available to assist in testing this scenario so
that security is not compromised and administration is not increased.

CDHS Web-Based Application Architecture Standards and Processes

Page 65 of 199 Version 3.0

Intranet

The Intranet is the term that describes CDHS’ most secure private network. The
users that are connected to the CDHS LAN/WAN who log into the CDHS
domains may have access to applications and data on the Intranet servers. The
client’s CDHS account is used to authenticate users and authorize access to
applications and data.

⇒ Figure 11 CDHS Intranet Architecture

Application Architecture
Intranet 7/7/2004

Department of Health Services

Router
Switch

Firewall

DHS Intranet: Active Directory

Web Application Database

DHS Intranet: Production

Web Application Database

DHS Intranet: Test

CDHS Intranet Architecture

Legend

Authentication & Authorization
Developer Connection
Code & Data Deployment
User Connection

Web Application Database

DHS Intranet: Development

Code Versioning & Build

`
Developer

`
User

Firewall

Router

Switch

Note:

All servers are active directory integrated.

HHSDC
Resources

Reporting Web

Reporting
Application

DHS Extranet RRAS: Business
Intelligence

Logical Seperation

Production

Production
Test

Reporting Web

DHS Intranet: Business Intelligence

BO Reporting Database

Extranet

The Extranet segment is configured with separate web, application and database
servers. Its purpose is to provide secure, authenticated and authorized access to
CDHS applications and data for CDHS business partners.

CDHS Web-Based Application Architecture Standards and Processes

Page 66 of 199 Version 3.0

⇒ Figure 12 CDHS Extranet N-Tier Architecture

Domain Controller

SQL Server
200

Web Client

Application Server

Web Server

SQL Server 2000

Firewall

Firewall

Web Tier

Application Tier

Database Tier

Kerberos

1433

443

1

2

3

4

5

6 7

1. Web user accesses the application
via the Internet.

2. The security model of IIS is set to
integrated security. The web server then
communicates with the DC.

3. The user is then authenticated
against the DC. If the user is
authenticated they are allowed access
to the application.

4. The web server requests access to
the application server, which is also set
to integrated security.

5. The application server then
communicates with the DC to verify that
the credentials that the web server
passed are accurate.

6. The application server then begins
communications with the database
server

7. The credentials sent by the
application server are then passed to
the DC to verify that they are accurate.
The user must have authorization at the
SQL Server level and the database level
to access data. If both are met then the
data is passed back through the tiers.

6/30/2003

N-tier Design

The web server is configured with IIS and the .NET
Framework. The security for the application is set to
Integrated security. The web server is also trusted for
delegation in Active Directory.

The application server is
configured with IIS and .NET
Framework. The application
server is trusted for delegation
and set to integrated security.
Web services are used for the
business logic. The protocol
used to communicate between
the web server is SOAP. The
actual data is passed as XML.

The security model for SQL Server is
using Windows authentication. All the
data is being accessed and
manipulated via stored procedures.
The communication between the two
tiers is encrypted. Permission can be
granted to a group or a specific user.

Firewall

Internet

Created by Joe Black SQL DBA Unit

As shown in the above figure, the CDHS Extranet consists of several zones which
are logically and physically protected from each other. For example, the business
logic layer hosts the data access layer which is isolated from the database server
via the firewall.

The Extranet has its own Active Directory Forest and Domain. Developers
writing applications for the Extranet must account for transaction and reporting
interfaces for CDHS Intranet users in the application design. Active Directory
organizational units are created and delegated to Program to manage. Group
permissions must be applied to web and application servers by the IU. Account
and group administration is then delegated to Program or the CDHS IT Help Desk
staff to the extent possible using web based utilities for administration.

CDHS Web-Based Application Architecture Standards and Processes

Page 67 of 199 Version 3.0

Internet

The purpose of the Internet segment is to support public access to non-
confidential information until further business requirements are identified. This
segment protects internal CDHS resources at the network and application layers.

The Internet zone provides test and production web, application and database
servers. The servers on this segment do not have the ability to directly
communicate with database servers or domain controllers on the Intranet segment.
The only connectivity occurs via push of data and content from the Intranet
segment to the Internet segment.

⇒ Figure 13 CDHS Internet Architecture

The database servers in the Internet segment have a conduit for data replication
with a replication server on the Intranet segment. The database replication server
resides on the Intranet and provides CDHS employees reporting and data
manipulation capability for data on the Internet segment. Not all data within a
database must be replicated. Horizontal and vertical data partitioning is available
and provides additional security.

Application and presentation updates occur via designated replication channels.
See the section on the Code Deployment for instructions on code promotion.

CDHS Web-Based Application Architecture Standards and Processes

Page 68 of 199 Version 3.0

In addition, the internal CDHS domain does not have a trust with the public
domain. Therefore, Internet applications cannot use CDHS internal accounts
based on this security model. User accounts are created within SQL server,
within the internet domain, or through lightweight directory access protocol
(LDAP) compliant methods. This security model protects the private CDHS
network from the users on the public Internet.

Internet SQL Servers cannot be directly accessed from the Internet. All access to
the data on Internet zone SQL Servers are made via test or production web
application servers. The Internet SQL Servers are not the database of record.

Distinct Servers for Application Life Cycle
Management

The ITSD provides the support for the following types of servers to support an
application throughout its life cycle.

Development

Development systems have been configured and made available so that the
application programmers that are working on a project can have a central
repository to store their work. It is expected that most developers will use their
desktop systems to begin development; however, this is not required.

Development systems for each of the zones will only be made available on the
Intranet segment. Developers will be provided with access to web, application,
database and version resources. Developers will not be provided with
administrator level permissions on any of the servers in the shared environment as
the resources are shared between multiple development teams. Operator level
permissions will be granted when necessary. There are several projects being
developed and each environment must be kept autonomous. Therefore, one
development team will not be given the ability to affect the work of another
development team.

The Development environment use is based on rules so that the integrity of the
environment can be preserved for all utilizing the available service. Contact the
SQL Server Unit and Internet Unit units for the most current rules. Examples of
some of the rules include:

1. Developers have database owner (DBO) access to databases.
2. All objects created must be owned by DBO.
3. SSU Groups will be created with a single account for developer testing
4. Full backups will be configured daily on databases
5. The database recovery model will be simple (No transaction log backups)

CDHS Web-Based Application Architecture Standards and Processes

Page 69 of 199 Version 3.0

6. Over 5 min. period, no database can utilize over 20% of the resources of
the system

7. Only developers will be allowed access to the development systems. User
testing will be done in the test environment.

8. Publishing roles will be established for web application posting.
9. Component registration will be scheduled in advance.
10. Standard maintenance intervals will be conducted and developers will be

subject to scheduled downtime.

Test

Test systems are available for use and will be based on test plans. Test servers are
available for each segment. Project test users will have access to the same
infrastructure connectivity and security model that the project will experience in
production. Movement from development to test will be orchestrated between
web and database teams. This involves the creation of security accounts,
configuring web and application servers and transferring data to the test systems.

The test environment use is based on rules so that the integrity of the environment
is preserved for all utilizing the available service. Contact the SSU and IU units
for the most current rules. Examples of some of the rules include:

1. Rebuild SYSDEPENDS from development when testing begins
2. Developers will have DBO access to the database during troubleshooting
3. Groups will be created with users for testing
4. Full database backups will be configured daily
5. The recovery model will be simple (No transaction log)
6. Test plan must be submitted in advance, agreeing upon timeline
7. Database will be taken off-line after conclusion of test plan
8. Performance monitoring of the systems during testing will be conducted
9. Over 5 min. period, no database can utilize over 20% of the resources of

the system
10. Test users must be identified in advance
11. Component registration will be coordinated in advance

The CDHS’ ITSD technical teams may also help with the testing of an application
to determine the overall impact of the application on the environment. CDHS
owns tools for this purpose. The results of this testing will be shared and
recommendations will be made based upon this imperial data.

Production

Production systems are configured and maintained to provide the highest level of
availability for CDHS’ customers. Once testing is complete, development and
infrastructure teams resolve any issues regarding maintenance, data import/export

CDHS Web-Based Application Architecture Standards and Processes

Page 70 of 199 Version 3.0

functions, scheduled processes, etc. The ITSD technical teams are responsible for
backups, operating system and application level maintenance functions for the
infrastructure of the application. Support services by Program for testing
infrastructure upgrades must remain available through the system life cycle.

The development group will not have database owner (DBO) permissions to the
production databases. Access to the data within a database will be granted
through the web services components and the application only. All database
schema changes must be coordinated through the SSU Group to ensure integrity
of the database and application. Change control processes will be adhered to,
ensuring the integrity of the application.

The Production environment use is based on rules so that the integrity of the
environment can be preserved for all utilizing the available service. Contact the
SSU and IU units for the most current rules. Examples of some of the rules
include:

1. Only the SSU Group has DBO Access to the database
2. All groups will be created and implemented
3. Connection accounts’ password will be reset
4. Full database backups configured daily (special backup requirements can

be requested of the SSU Group)
5. Database Recovery model is Full (for Trans log backup)
6. Full transaction log backup configured an hour interval
7. Change control procedures must be followed for production changes
8. Over 5 min. period, no database can utilize over 20% of the resources of

the system

CDHS Research Center (CDHSRC)

The CDHSRC provides an opportunity for the organization to evaluate the
business benefit of identified technologies prior to procuring them and to evaluate
custom and commercial products prior to implementing them in the core
development, test and production environments.

The key objectives of the CDHSRC are to:

1. Establish an environment for IT issues related to current technology and
future advancements in research and computing.

2. Assist decentralized IT support staff in analyzing IT needs and act as a
catalyst for bringing leading edge technology to LAN Administrators.

3. Establish functionality within the ITSD structure to promote an
educational environment for CDHS Programs .

4. Provide a development environment for the purposes of planning and
testing to meet the IT needs of the organization.

CDHS Web-Based Application Architecture Standards and Processes

Page 71 of 199 Version 3.0

Scheduling Time and Resources

The lab manager can best accommodate lab scheduling when given two weeks or more
advanced notice of an upcoming project. Complicated projects requiring multiple
pieces of equipment or network design may require a month prior notice. When
contacting the lab manager, provide the following:

1. List of customer owned equipment to be brought into the lab for
project.

2. List of lab equipment required for the project.
3. Architectural requirements for project (i.e. special access to

resources outside the lab etc.)
4. Desired start and end date.
5. List of approved users to access test equipment.
6. Special requirements not provided by the laboratory.

Maximum Project Duration

Projects may last up to two (2) months in the CDHSRC. However, if the participant
has brought in their own equipment, other than the use of shared infrastructure
equipment, the project may go as long as four (4) months.

Requesting Extra Time

Lab customers may request an extension to continue work in the lab, however, there is
no guarantee of an extension. In the event that extra time is needed, contact the lab
manager. The lab manager will review requests and attempt to assist where possible.

Commercial-off-the-Shelf Product Hosting

CDHS’ environment also includes provisions for hosting products purchased to
meet specific business requirements. Among these products available in the
shared web hosting environment are:

1. Remedy
2. Business Objects
3. WebTrends
4. WatchFire (Accessibility and Quality)
5. SAS

The IU, SSU and ISO will work with Programs in selecting, testing and deploying
web-enabled products for the enterprise. The NTSS, SSU, and ISO will work
with Programs in selecting, testing and non-web based solutions for the
enterprise.

CDHS Web-Based Application Architecture Standards and Processes

Page 72 of 199 Version 3.0

Enterprise-Reporting

The implementation of Business Objects, an enterprise-reporting tool provides
CDHS Programs with the ability to access and disseminate their data via the web
to internal CDHS staff and selected external customers.

The Department supports a wide range of legacy reporting system technologies
and fields many proposals for new reporting systems. Most proposals require their
own servers and infrastructure, a Feasibility Study Report (FSR), and are often
very expensive to maintain and support. The availability of enterprise reporting
tools that access information in different types of database products led CDHS to
find a more efficient method for reporting and data analysis.

The enterprise reporting tool selection is the result of a departmental collaborative
effort to identify a solution for meeting an increased demand for access to and
dissemination of CDHS information. The effort required that the solution meet
the needs of a variety of customers, internal knowledge workers and external
business partners.

The products key features utilized in a number of production systems include:

1. It’s ability to access different database structures without added
programming.

2. Built-in capability to deliver information over the Extranet and
Intranet.

3. Wide variety of report generation levels of detail for batch and ad
hoc reports.

4. Minimum training required for programs to customize reports for
their customers.

5. Ability to use a common reporting tool for a variety of CDHS
programs.

6. Ability to access information stored at HHSDC as well as CDHS.
7. Ability to be supported by the ITSD DBA Unit for use throughout

CDHS.

CDHS Web-Based Application Architecture Standards and Processes

Page 73 of 199 Version 3.0

Section V Server Standards for Hosting Applications

The CDHS supports a multi-tier server build specification. The base build for all
servers, Tier I, is developed by the Server group. The Internet and SQL server
groups support installation and configuration of web, application and database
components, actively maintaining a Tier II build. The minimum server build
standards for web, application and database servers must obtained from the IU
and SSU respectively. These standards do change, so it is best to check with the
IU and SSU for the most current builds.

Specific Server Configuration Requirements

The following tables list the settings required in the n-tier configuration for web,
application and database servers. This configuration is required for servers in the
Intranet and Extranet.

Web Server

⇒ Table X Web Server Configuration Requirements

Configure IIS
Step More Information
Disable Anonymous access for
your Web application's virtual root
directory

Enable Basic Authentication for
your Web application's virtual root

Configure ASP.NET
Step More Information
Configure your ASP.NET Web
application to use Windows
authentication

Edit Web.config in your Web application's virtual
directory
Set the <authentication> element to:

<authentication mode="Windows" />

Configure your ASP.NET Web
application for impersonation

Edit Web.config in your Web application's virtual
directory
Set the <identity> element to:

<identity impersonate="true" />

CDHS Web-Based Application Architecture Standards and Processes

Page 74 of 199 Version 3.0

Application Server (that hosts the Web service)

⇒ Table XI Web Application Server Configuration Requirements

Configure IIS
Step More Information
Disable Anonymous access for
your Web service's virtual root
directory

Enable Windows Integrated
Authentication for your Web
service's virtual root directory

Configure ASP.NET
Step More Information
Configure your ASP.NET
Web service to use Windows
authentication

Edit Web.config in your Web service's virtual directory
Set the <authentication> element to:

<authentication mode="Windows" />

Make sure impersonation is off Impersonation is off by default; however, double check to

ensure that it's turned off in Web.config, as follows:

<identity impersonate="false" />

Note that because impersonation is disabled by default,
the same effect can be achieved by removing the
<identity> element.

SQL Database Server

⇒ Table XII SQL Server Configuration Requirements

Step More Information
Create a SQL Server account
for each application.

Configure SQL Server for
Mixed mode

Establish database permissions
for the database user

Grant execute rights on the stored procedure

CDHS Web-Based Application Architecture Standards and Processes

Page 75 of 199 Version 3.0

Active Directory Configurations

The following procedures are implemented in Active Directory to support the n-
tier model in CDHS:

⇒ Table XIII CDHS Active Directory Configuration Requirements

Step More Information

Servers Trusted for Delegation Server must be configured in Active Directory as
“Trusted for Delegation”

Add User accounts to Active
Directory

All users of the application must have an account in

Active Directory and it must also be configured for

delegation.

Create Groups for Role Based
Security

Management groups must be set up for each

application. These groups will match the

applications roles used for securing the application.

Port Configuration Requirements

The following minimum specifications for port configurations must be in place:

⇒ Table XIV CDHS Minimum Firewall Configuration Requirements

Port Description

80/TCP -- HTTP

Hypertext Transfer Protocol is the set of rules for
exchanging files (text, graphic images, sound, video,
and other multimedia files) on the World Wide Web.
Relative to the TCP/IP suite of protocols (which are
the basis for information exchange on the Internet),
HTTP is an application protocol.

88/UDP -- KERBEROS

Kerberos is a network authentication system which is
based on the key distribution model. It allows
entities communicating over networks to prove their
identity to each other while preventing
eavesdropping or replay attacks. The Kerberos Key
Distribution Center (KDC) listens on this port for

CDHS Web-Based Application Architecture Standards and Processes

Page 76 of 199 Version 3.0

Port Description

ticket requests. Port 88 for Kerberos can also be
TCP/UDP

389/TCP -- LDAP

LDAP is the Lightweight Directory Access Protocol.
LDAP is designed to be a standard way of providing
access to directory services. LDAP is the primary
way the operating system accesses the Active
Directory database.

443/TCP -- HTTPS
HTTPS is A variant of HTTP used for handling
secure transactions. HTTPS is a unique protocol that
is simply SSL underneath HTTP.

636/TCP – LDAP OVER SSL
LDAP over Secure Sockets Layer (SSL). When SSL
is enabled, LDAP data that is transmitted and
received is encrypted.

1433/TCP - SQL3 Used to communicate with SQL Server

3 Check with the SQL Server Unit for the correct port specifications.

CDHS Web-Based Application Architecture Standards and Processes

Page 77 of 199 Version 3.0

Section VI Application Security Model Requirements

CDHS has chosen an application security model that closely follows Microsoft’s
current recommendations for an n-tier application that uses web services in the
application zone. The intention is to create an environment that is as secure as
possible minimizing restrictions for developers as much as possible.

Authentication

There must be an ability to verify that the user attempting to access your
application is who they say they are. The supported methods in the CDHS
environment are described below.

Authorization

Intranet (runs exclusively within the CDHS internal domain)
authorization occurs when each user of the application has a network
account enabling the user’s to gain access to authorized resources based
on the credentials passed and validated by the domain controller. Logged
on users will not need to log into the application once validated on the
network.

Extranet (access for trusted business partners via the Internet)
authorization occurs when a user attempts to access CDHS resources is
prompted to provide credentials that must be validated against the account
information, and subsequent resource access permission, stored within a
domain controller in the extranet zone.

Internet (access for the general public) authorization is not currently
required by any CDHS web-enabled business function and therefore
anonymous authorization is permitted to gain access to resources.

Trusted Sub-System Model

CHDS adopts the Trusted Subsystem Model so that the original identity of the
user is checked at the IIS/ASP.Net gate, mapped to a role, and then authorized
based on role membership of the user. System resources for the application are
then authorized at the application or role level.

The multi-account setup is used for CDHS applications. The idea behind this
model is that users are added to groups based on their work tasks. For example, a
group of users may need to simply view data. A reports group can be created.
This group only needs read access to the data. When this group accesses the data
within SQL Server they are doing so through a single Windows account. This

CDHS Web-Based Application Architecture Standards and Processes

Page 78 of 199 Version 3.0

Windows account only has read access to the data within SQL Server. When
developing an application using this model it is very important to clearly identify
what groups need to be set up and what permissions they need.

Enabling Authentication and Authorization in CDHS
Applications

Intranet – An Intranet application is designed to run exclusively within the
CDHS internal domain. In this scenario, each user of the application has a CDHS
network account which they have used to log into the network that has been
validated by the domain controller. Based on this scenario, the following is done:

First, configure the web server to use Windows Integrated Security in IIS thus the
credentials of the user logged into the computer are used. The credentials are not
to be stored within the application or database.

Next, the ASP.NET application is configured to use the default authentication,
Windows. This authentication information is held in the web.config configuration
file. This XML document can be easily edited with notepad or any other editing
tools. The web.config file reflects the following:

 <configuration>
 <system.web>
 <authentication mode="Windows" />
 </system.web>
 </configuration

Internet – Internet applications are accessed via the Department’s public web
servers. For information that must be available to the public that requires no
authorized access, there are no accounts set up on the network for authentication
purposes. This means that we grant anonymous access to these sites. There are
cases when we need to secure some of the information on the web site. To
accomplish this, we authenticate the user before allowing them to have access to
secure areas of the site.

Anonymous

First, IIS is configured for Anonymous access. Next, the ASP.NET application is
configured to use no authentication. The web.config file reflects the following:

 <configuration>
 <system.web>
 <authentication mode="None" />

</system.web>
 </configuration

CDHS Web-Based Application Architecture Standards and Processes

Page 79 of 199 Version 3.0

Authentication, Forms-Based

Forms-based authentication is used for providing authenticated access to a public
web application. The user provides their credentials through a custom login page.
The credentials are then automatically checked for verification. If the user is
authenticated a cookie is created. Each additional secure page then uses this
cookie for access. If the cookie exists, the page can be accessed by the requesting
party. If the cookie does not exist, the requestor is automatically rerouted to the
login page.

First, IIS is configured to allow Anonymous access to the site. Anonymous
access is acceptable because the authentication is handled by the application using
forms-based authentication.

Next, the ASP.NET application is configured to use forms authentication. This
authentication information is held in the web.config configuration file. This XML
document can be easily edited with notepad or any other editing tools. The
web.config file reflects the following:

 <configuration>
 <system.web>
 <authentication mode="Forms" />
 </system.web>
 </configuration

Storage of user credentials can be accomplished in multiple ways including the
web.config (for a small number of users), an XML data source (small to medium
number of users) or a database (large volume of users). CDHS will only support
storage of user credentials in a database for Internet applications.

Extranet – An Extranet application is one in which trusted business partners
will be using the application. The application and resources are exposed over the
Internet, which means that a secure method of authentication is required.
Generally, this means tighter control over user accounts compared to the Internet
and a higher level of trust with the user. The following illustration shows a
typical layout for a CDHS Extranet application.

CDHS Web-Based Application Architecture Standards and Processes

Page 80 of 199 Version 3.0

⇒ Figure 14 CDHS High-Level Extranet Design

CDHS’s Extranet will host new ASP.NET applications. There is a domain
controller (DC) with Active Directory configured. All Extranet application users
must have an account in the DC. The user supplied credentials are passed to the
DC. If the supplied credentials are verified the user is permitted to access the site.
Secure Socket Layer (SSL) is to be used therefore ensuring that all
communication is encrypted. The following steps are applied:

First, IIS is configured with Basic authentication and Anonymous access disabled.
This prevents public access to the site and prompts the user to login. The user
then enters their supplied credentials for authorization.

Next, the ASP.NET application is configured to use the default authentication,
Windows. This authentication information is held in the web.config configuration
file. This XML document can be easily edited with notepad or any other editing
tools. The web.config file reflects the following:

 <configuration>
 <system.web>
 <authentication mode="Windows" />
 </system.web>
 </configuration

Understanding and Enabling Role-Based Security

Role-based security in the .NET Framework extensively uses two concepts:
identities and principals.

CDHS Web-Based Application Architecture Standards and Processes

Page 81 of 199 Version 3.0

Identity & Principal

An identity encapsulates the user’s logon name. A principal encapsulates the
membership information of the user’s role. The runtime provides functionality to
perform authorization checks by using identity and principal-related objects
directly, or by using imperative or declarative permission checks.

⇒ Figure 15 Identity

A principal object represents the security context under which code runs. This
includes the identity of the user, as represented by an associated identity object,
and the roles associated with the user.

CDHS Web-Based Application Architecture Standards and Processes

Page 82 of 199 Version 3.0

Role-based security in the .NET Framework supports three kinds of principals, as
described in the following table.

⇒ Table XV CDHS High-Level Extranet Design

Principal Description
Windows Represents Windows users and their roles. The roles are the

Windows groups of which the user is a member. The
WindowsPrincipal class implements this principal.

Generic Represents users and roles that exist independent of
Windows users and their roles. Essentially, the generic
principal is a simple solution for application authentication
and authorization. The GenericPrincipal class implements
this principal.

Custom Represents application-specific role information. Any
custom principal class must implement the IPrincipal
interface.

⇒ Figure 16 Principal

All principal classes implement the IPrincipal interface. The IPrincipal interface
has an Identity property that stores the identity object that is related to the current
principal and an IsInRole method that determines whether the current principal
belongs to the specified role.

CDHS Web-Based Application Architecture Standards and Processes

Page 83 of 199 Version 3.0

Windows Identity

To perform role-based validation you must first create a WindowsIdentity object
and a WindowsPrincipal object. The code you write to handle these objects will
vary depending on whether code must validate only once or repeatedly.

⇒ Figure 17 Role Based Validation Code Sample

Checking Identity and Role Membership

You can use principals and identities to control access to code based on the user’s
identity and role membership.

CDHS Web-Based Application Architecture Standards and Processes

Page 84 of 199 Version 3.0

⇒ Figure 18 Checking Identity & Role Membership

The following example uses a case-insensitive string comparison to see if the
name of the user is DOMAIN\Fred. The first two parameters to the static
String.Compare method are the strings to be compared, and the third parameter
tells the method to do a case-insensitive comparison.

⇒ Figure 19 Case Sensitive String Compare Code Sample

You can check role membership by calling the IsInRole method on the principal
object. For example, you can use this technique to determine whether the user
belongs to the DOMAIN\Administrators role.

For WindowsPrincipal objects, a role corresponds to a Windows group, including
the domain. When checking for membership in built-in Windows groups, you can
use the WindowsBuiltInRole enumeration. Using this enumeration allows you to
develop code that is more easily localizable.

CDHS Web-Based Application Architecture Standards and Processes

Page 85 of 199 Version 3.0

⇒ Figure 20 WindowsBuiltInRole Enumeration Code Sample

Impersonation

To achieve impersonation, the following steps must be applied.

⇒ Figure 21 Impersonation

Principal Permission Object

You can make role-based security checks by creating and demanding
PrincipalPermission objects that represent identity names and roles for which you
want to check.

The PrincipalPermission object represents the identity name and role that a
particular principal class must have to complete a security check.

CDHS Web-Based Application Architecture Standards and Processes

Page 86 of 199 Version 3.0

⇒ Figure 22 Principal Permission Object

During a call to the Demand method, the common language runtime examines the
current thread’s principal and identity objects to determine whether the identity
and role information match those represented by the PrincipalPermission object
on which Demand is being called. If the principal object does not match, a
SecurityException is thrown. A stack walk is not performed, because only the
principal object of the current thread is examined.

⇒ Figure 23 Creating and Demanding Principal Permission Code Sample

CDHS Web-Based Application Architecture Standards and Processes

Page 87 of 199 Version 3.0

Declarative Role-Based Security Checks

You can use the PrincipalPermission attribute to declaratively demand that users
running your code belong to a specified role or have a specific identity name.

⇒ Figure 24 Declarative Demand

You can place demands at the class level as well as on individual methods. If you
place a declarative demand at both the class and member levels, the declarative
demand at the member level overrides the demand at the class level.

⇒ Figure 25 Principal Permission Demand Code Sample

If you omit the Name, Role, or Authenticated property from the attribute
instantiation, the check will match any identity name, role, or authentication
status, respectively. If the current thread does not contain a matching principal a
SecurityException is thrown.

CDHS Web-Based Application Architecture Standards and Processes

Page 88 of 199 Version 3.0

Implementing Role-Based Security for CDHS Applications

CDHS’ method for implementing role-based security for its applications utilizing
web services requires authorizing callers. Each of the following methods may
apply at the method level and are listed in the order of preference:

 Declarative Demand
 IsInRole() method
 Imperative Demand

If possible, use declarative syntax so a systems administrator will be able to easily
determine the permissions that the application requires. For example, use this at
the method level:

[PrincipalPermissionAttribute(SecurityAction.Demand, Role = "User")]

In addition, allow and deny roles on a per application basis in web.config such as:

<authorization>
 <allow roles="Admin, Tester, Auditor" />
 <deny users="*” />
</authorization>

Passing Credentials for Authentication to Web
Services

When calling a web service, the developer does so by using a web service proxy;
a local object that exposes the same set of methods as the target web service. The
developer can generate a web service proxy by using the wsdl.exe command line
utility. Alternatively, the proxy can be generated by adding a web reference to a
Visual Studio.NET project.

Note: If the web service for which the developer wants to generate a proxy is
configured to require client certificates, the developer must temporarily switch off
the requirement for client certificates while adding the reference, otherwise an
error occurs. Having added the reference, the developer must remember to
reconfigure the service to require certificates. An alternate approach is to keep an
offline WSDL file available to consumer applications. The developer must
remember to update this if the web service interface changes.

Specifying Client Credentials for Windows
Authentication

CDHS Web-Based Application Architecture Standards and Processes

Page 89 of 199 Version 3.0

If the security zone dictates the use of a Windows authentication scheme, the
developer must specify the credentials to be used for authentication via the
Credentials property of the web service proxy. If the developer does not
explicitly set this property, the web service is called without credentials resulting
in an HTTP status 401, access denied response.

Using Default Credentials

Client credentials do not flow implicitly. The web service consumer must set the
credentials and authentication details on the proxy. To flow the security context
of the client's Windows security context (either from an impersonating thread
token or process token) to a web service the developer sets the Credentials
property of the Web service proxy to CredentialCache.DefaultCredentials as
shown below.

proxy.Credentials =
System.Net.CredentialCache.DefaultCredentials;

Adopting this approach allows for the following:

 This flows the client credentials when using NTLM, Kerberos, or
Negotiate authentication.

 If a client-side application (for example a Windows Forms application)
calls the web service, the credentials are obtained from the user's
interactive logon session.

 Server-side applications, such as ASP.NET web applications use the
process identity, unless impersonation is configured in which case the
impersonated caller's identity is used.

Set the PreAuthenticate Property

The proxy's PreAuthenticate property can be set to true or false. Set it to true to
supply specific authentication credentials to cause a WWW-authenticate HTTP
header to be passed with the initial web request. This saves the web server from
denying access of the initial request and performing authentication on the
subsequent request.

Business Logic Layer (BLL)

The following paragraphs describe the physical architecture layout of the BLL
and the model for developing code in this tier. This is designed for developers
that have experience programming in an n-tier environment, and are also familiar
with .NET and Web services. The goal is to clearly detail the physical
architecture and the coding model for this layer within the CDHS environment.

CDHS Web-Based Application Architecture Standards and Processes

Page 90 of 199 Version 3.0

⇒ Figure 26 N-Tier Model

The business logic layer will contain business rules that govern interaction with
data. In the business logic layer there is no need to house any knowledge of the
database or data store. All of the data interaction occurs in the data layer. In the
BLL there is a separation between the layers. This allows the changes to be made
to different layers without affecting the other layers

In the CDHS environment the BLL contains all of the business rules and error
handling for the application. The BLL does not have any knowledge of the data
layer, which will allow for changes to be made without affecting any of the other
layers. Web services are used to pass the data to the presentation layer using the
SOAP protocol over http.

After a web service is created and is deployed to the BLL server the presentation
can consume the web service. Once the web service is consumed the class is
exposed and calls can be made from the presentation layer. All of the
functionality of the web service can then be used throughout the application by
simply making a call to the desired namespace.

As seen from the n-tier illustration above, specific ports will be open between the
presentation and business logic layers. With the removal of port 1433 this in
essence eliminates direct communication with the database. The removal of
direct communication is a major security benefit.

As ports 80/443 are the only ports open for communication between the
presentation and BLL, the data passed to the presentation layer will use the
corresponding protocol. CHDS supports web services in the BLL to handle all of

CDHS Web-Based Application Architecture Standards and Processes

Page 91 of 199 Version 3.0

the application logic, rules and error handling. CDHS supports VB.NET as a
preferred language.

Once the business logic is created the web service must be able to communicate
with the presentation layer. For communication to occur between the presentation
and BLL the web service must be located and the communication channel must be
established.

Data Access Layer

The DAL is the logic used to access data stored in SQL Server. All CDHS
applications that access data stored in SQL Server will do so using stored
procedures and no underlying tables are to be exposed, greatly reducing the
possibility of data being accessed outside of an application.

The following methods further eliminate the possibility of SQL injections and are
achieved through the use of the Data Access Layer (DAL):

 In an n-tier model the application layer no longer has the ability to
communicate directly with the database eliminating the ability to use in-
line SQL Statements. The Data Access Layer (DAL) forces applications
to communicate with the DAL rather then with the database via stored
procedures. A single account is created for the DAL to use in making
connections to the database. The database is configured to use this fixed
identity. This account has access to the database and has the appropriate
rights to interact with the database. Creating a fixed identity accomplishes
the following database security benefits:

 Users do not have logon rights to the database.

 The single account can be stored in a secure location.

 The single account can be configured with a strong password.

 All interactions to the database are via stored procedures.

 Users can not connect directly to SQL Server with any tools such as
Access, Excel, etc.

 Stored procedures are used to access and interact with the database. If all
interactions with the database occur through stored procedures no access
to the base tables can occur.

 When using stored procedures, implement them using the ADO command
object so that variables are strongly typed.

 No in-line SQL statements are to be used.

 Normal users are created (no fixed server or database roles) which
provides the ability to natively access all objects in the database to which

CDHS Web-Based Application Architecture Standards and Processes

Page 92 of 199 Version 3.0

the account is given access. At best, this may mean only being able to run
some stored procedures. At worst, this means possible read/write access
to all tables and views.

 Utilize an extensive code review and testing process that exposes any
potential problems.

Applying in the Intranet Zone

In the Department’s current Intranet design there are four main application layers.
The main layers are Presentation, Application, Data Access, and Data. The
Intranet Zone is set up to use Active Directory, and it is designed as a single forest
with no trust to any other zone. The following image is a high level diagram of
the Department’s Intranet design.

⇒ Figure 27 CDHS Application Layers in the Intranet

The web applications rely on SQL Server as a primary data store. When data is
accessed, inserted or updated certain steps need to be taken. To complete these
steps an understanding of the configuration of the Intranet zone is important. In
the Intranet zone must have a user account in the Active Directory. This enables

CDHS Web-Based Application Architecture Standards and Processes

Page 93 of 199 Version 3.0

us to use integrated security rather than store the password some place in the
application or in a database table.

When a user accesses an application their credentials are verified and if they are
authenticated they can access the application. If the user accesses a portion of the
site that needs to interact with SQL Server, a web service in the application layer
is called. The user’s credentials are then passed on to the application layer.
When the web service makes a call to the data layer it is doing so on behalf of the
user.

When the DAL is called, the user’s credentials are passed from the application
layer. When the DAL makes a call to SQL Server in the data layer it is doing so
using the credentials of the user. All of the interactions with SQL Server are
through stored procedures. Stored procedures can be secured by only giving
execute rights to certain individuals or groups, so the user must either have
execute rights or belong to a group that has execute rights to interact with SQL
Server.

For example, if the user wants to update a record in the database the web service
is called to complete this request. The DAL is passed the connection string,
stored procedure name and any parameters that may be needed. The user’s
credentials are then checked and if they are authorized to execute the stored
procedure then the process takes place. If the user is not authorized then the
request is denied.

The design of the DAL is created in such a way that data components are exposed
to the application layer. When the web service needs to interact with the Data
layer they do so by calling the desired component. For example, if the application
needs a dataset to be returned to populate a datagrid in the presentation layer the
data component designed to return a dataset is called. This allows the detailed
steps of ADO.NET to be handled at the DAL and removes the need for the
application developer to deal with these complexities. The following code sample
demonstrates a web service requesting a dataset:

' DataSet that will hold the returned results
 Dim ds As DataSet

 ' Call ExecuteDataset static method of SqlHelper class that returns a Dataset
 ' We pass in database connection string, command type, stored procedure
name and a "1" for CategoryID SqlParameter value
 ds = SqlHelper.ExecuteDataset(ConnectionString, _
CommandType.StoredProcedure, "getProductsByCategory", _
New SqlParameter("@CategoryID", 1))

 ' Get XML representation of the dataset and display results in text box
 txtResults.Text = ""

CDHS Web-Based Application Architecture Standards and Processes

Page 94 of 199 Version 3.0

 txtResults.Text = ds.GetXml()

 DataGrid1.Visible = True
 DataGrid1.DataSource = ds
 DataGrid1.DataBind()

 End Sub

The code shows how the SqlHelper component is called and returns a dataset.
The DAL hides all of the code to open a connection, execute a command, pass a
parameter and close the connection. An application developer that is coding the
application layer does not need to worry about all of the underling tasks. They
just need to simply call the DAL component.

Applying in the Extranet Zone

The Extranet design is similar to the Intranet. In the Extranet there is central
domain controller that is running Active Directory. Each user permitted to access
applications in the Extranet Zone must have an account in Active Directory. The
Extranet Zone is also configured as a forest with no trust relationships. However,
a key difference between the Intranet and Extranet is the way in which users are
initially authenticated. Because Extranet users will be accessing the application
from the Internet there is no way of knowing who they are. In an Intranet
environment the users log into their computer on the network before accessing the
application, therefore we know who they are logged on as. To get the identity of
the Extranet user we must have them provide us with some form of identification.
This process is accomplished by setting up basic authentication in IIS. When the
user accesses an application set up with basic authentication they are prompted
with a login screen that they use to provide their credentials. These credentials
are then validated against Active Directory, and if the user’s credentials are good
they have been authenticated and can access the application.

The basic steps of how the application communicates through the multiple layers
are the same as in the Intranet Zone.

Intranet/Extranet Applications

There are cases when an application needs to be accessed from both the Intranet
and Extranet. In these cases the models mentioned above must be modified. The
reason that the applications that are accessed from both zones need some
modification is because of the lack of trust between the two zones. In the models
mentioned above the credentials of the users can be passed from layer to layer.
The reason that this is possible is because of the trust relationship between layers.

CDHS Web-Based Application Architecture Standards and Processes

Page 95 of 199 Version 3.0

In the scenario when an Intranet user needs to access to an Extranet application
there is no trust between the Intranet and Extranet zones. This means that if the
Intranet credentials were to be passed into another zone they would be rejected.
The following image represents both zones and the communication between them.

⇒ Figure 28 Intranet / Extranet Application Interfaces

Extranet ZoneIntranet Zone

Application

Data Access

Data

Form TitleForm Title
Enter Text

Presentation

Database

Web

Application
Domain Controller

Form TitleForm Title
Enter Text

In the image above the database only resides in the Extranet An Intranet user will
be given an Extranet account to access the application. Intranet accounts do not
have permissions to access Extranet data. When the DAL attempts to
communicate with the data layer the original credentials could be used sacrificing
the ability to use connection pooling. To allow for connection pooling, a standard
SQL Server account is created. When the DAL communicates with SQL Server
the connection string that is passed will contain the login information of the
standard account.

When developing an application in either the Intranet or Extranet Zone it is
important to understand how to access the data through the DAL. Often times an
application can have interfaces that reside in both the Intranet and Extranet zones.
In this case the developer must understand the security and credential
requirements that are in place. Because there is no trust between the two zones
the user’s credentials can not be passed through all layers.

Code Access Security

Code Access Security (CAS) is the method of allowing the administrator to
control the level of permission granted to a given assembly based on the origin of

CDHS Web-Based Application Architecture Standards and Processes

Page 96 of 199 Version 3.0

the identity and origin of the assembly. In each of the three CDHS zones specific
CAS policies are set to further secure the applications being hosted on a shared
server. It is very important in a shared environment to control what the code
from each application has access to.

CDHS CAS Policy

CDHS has chosen to implement CAS within the machine.config file. The
following specifies the configuration applicable in the CDHS environment.

Web Servers (Medium Trust)

1. All web applications will run in “Medium” mode.
2. All web applications will be limited to calling pre-defined web services

only.
3. Any code that needs more permission to execute will be contained in a

web service.
4. Under unique circumstances the Internet Unit may grant the developer the

right to create a Custom Configuration file for use by the web application.

Default Configuration

o Machine.Config
 set Trust Level = “Medium”
 set AllowOverride = “false”

o Web.Config
 Set urlOrigin= “Url to web service(s) to be called” to limit

the services the web app may call into.
 Impersonate = True

Application Servers (Full Trust)

1. All web services will run in medium mode by default as set in the
web.config file.

2. If a service requires more permission to execute there are two options:
a. If the service requires full trust then make no entry in web.config,

using the default setting of full in the machine.config.
b. If the service does not require full trust but requires more than the

default permissions, the developer will create a custom
configuration files incorporating the minimum level of permissions
required to execute. Once reviewed and approved by the Internet
Unit, the web.config will be set to use the custom file.

CDHS Web-Based Application Architecture Standards and Processes

Page 97 of 199 Version 3.0

Default Configuration

3. Machine.Config
 Set Trust Level = “Full”
 Set AllowOverride =”true”

o Web.Config
 Set Trust Level = “Medium”
 Impersonate = false
 If Special Permissions are required

• Set Trust Level= “Custom Config File”
• OR for applications needing full trust leave this

entry blank

CDHS Web-Based Application Architecture Standards and Processes

Page 98 of 199 Version 3.0

Section VII Application Coding Standards

CDHS Standards for .NET Applications

The following sections are intended to provide developers with the requirements
for developing .NET Applications in the CDHS environment. This includes
topics such as naming conventions, creation of web services and database
references. Applications developed by CDHS staff or by vendors on behalf of
CDHS programs are expected to follow these standards.

Coding standards, clearly commented code and structured code all contribute to
help others to understand and comprehend the program more easily. It is also
easier to debug and maintain a clearly written application.

Coding styles may differ between programmers; however, the following rules
should be applicable to most coding styles. It is also important to note that CDHS
has adopted these standards from Microsoft.

General Overview

Coding standards, clearly commented code and structured code all contribute to
help others to understand and comprehend the program more easily. It is also
easier to debug and maintain a clearly written application.

Coding styles may differ between programmers and this document should not be
considered to enforce any particular style. All the following rules should be able
to be applied to all styles of coding.

CDHS Coding Standards

The following address the coding standards applicable in the CDHS environment.

Exception Handling & Custom Error Pages

Exception Handling

1. Bubble up all unhandled exceptions to the UI layer

 Display a generic fixed message to users

 Write Exception information to either the event log or
email it

2. Catch only specific exceptions that you can handle

CDHS Web-Based Application Architecture Standards and Processes

Page 99 of 199 Version 3.0

 Re-Throw any exceptions you cannot handle to the UI layer
 Do Not catch the general Exception class error except for in

the UI layer
3. Provide a central Error Handler for your application (in a base

class)
4. Catch exceptions in both Global.asax (Application_Error) and in

your Web Page (base class)
5. Do not overuse Try Catch blocks as they slow down processing. If

you catch exceptions in your page events then there is no reason to
catch any exception that you cannot handle in any helper classes.
Library classes that are used by many other applications should
always use this rule and let the caller decide what to do about
exceptions.

Custom Error Pages

Do not allow exception details to propagate from your Web applications back to
the client. A malicious user could use system-level diagnostic information to learn
about your application and probe for weaknesses to exploit in future attacks.

The <customErrors> element can be used to configure custom, generic error
messages that should be returned to the client in the event of an application
exception condition. The error page should include a suitably generic error
message, optionally with additional support details. You can also use this element
to return different error pages depending on the exception condition.

Make sure that the mode attribute is set to "On" and that you have specified a
default redirect page as shown below:

<customErrors mode="On" defaultRedirect="YourErrorPage.htm" />

The defaultRedirect attribute allows you to use a custom error page for your
application, which for example might include support contact details.
Note Do not use mode="Off" because it causes detailed error pages that contain
system-level information to be returned to the client.

If you want separate error pages for different types of error, use one or more
<error> elements as shown below. In this example, "404 (not found)" errors are
redirected to one page, "500 (internal system errors)" are directed to another page,
and all other errors are directed to the page specified on the defaultRedirect
attribute.

<customErrors mode="On" defaultRedirect="YourErrorPage.htm">

 <error statusCode="404" redirect="YourNotFoundPage.htm"/>

 <error statusCode="500" redirect="YourInternalErrorPage.htm"/>

CDHS Web-Based Application Architecture Standards and Processes

Page 100 of 199 Version 3.0

</customErrors>

For an example of using a central error handling see:
DemoServiceSolutionVB.sln

Input Validation

 Validate all user input for script tags, field length and data type on the
Server

 HTML encode any data input by users that is to be displayed in the UI
 Test for empty strings using System.String.Length using:

If (Name.Length == 0) NOT: If (Name == “”)

Asserts and Demands

Asserts require security demands. Asserting security permission without
performing any security checks can leave an exploitable security weakness in
code.

 try {

SomePermission.Demand();
 SomePermission.Assert();
 Work();

 } finally {
 SecurityPermission.RevertAssert();
 }

Assemblies Specify Permission Requests

Add attributes specifying what permissions your assembly will demand, might
demand, and what permissions it does not want granted. For example, the
following attribute indicates that an assembly will, at minimum, require read
access to the USERNAME environment variable:

[assembly:EnvironmentPermissionAttribute(SecurityAction.RequestMini
mum, Read="USERNAME")].

To specify permissions that the assembly might demand, use

SecurityAction.RequestOptional.

CDHS Web-Based Application Architecture Standards and Processes

Page 101 of 199 Version 3.0

To specify permissions that the assembly must not be granted, use

SecurityAction.RequestRefuse.

Transfer to Page

DO NOT use Server.Transfer (which bypasses authorization) to go to a secure
page, use Response.Redirect instead

Comments

Comments make the code more comprehensible.
Comments should explain the algorithm or logic being used.
Simple comments should NOT be used as it just clutters up the code, the variable
names should help to explain any simple code.

Example 1 (c#):

 // get the user name

string name = getUserName();
// get count of sick days used
int days = getSickDaysUsedt(name);

The above comments do not serve any useful purpose

Example 2 (vb):

 ‘ may be null if the user is not yet logged in

string name = getUserName();

‘ may be negative is user has used all sick days plus some
int days = getSickDaysUsedt(name);

This example at least offers some insight not gleaned from the
function names themselves

 For more complicated scenarios, use more comments in blocks as:
 (c#)
 /* ----------------------------------
 This code ASSUMES:
 1. The user is logged on
 2. The user has admin rights
 3. The userName is never NULL
 ---------------------------------- */

CDHS Web-Based Application Architecture Standards and Processes

Page 102 of 199 Version 3.0

 bool canWork = canUserWork(userName);

 // ----------------------------------
 // Create a sorted list as the rules require all names to be in sorted
 // order by name.
 // List Format expected by callers is:
 // Key=Name Value=SS#
 // ----------------------------------
 SortedList lst = getUserList();

Function Header Comments

All functions should have a header explaining the general operation, parameters
and return values. Also include any special assumptions or requirements.

This is a full standard header:

/* --
Function: UpdateUser

Description: To update the user in the AD using LDAP

Parameters: SortedList lstAdd - groups to add user
to
 string adsPath - full AD path of
user

Return Value: string Id - the Id of this user

Notes: Throws exception if caller is not an admin
 Updates all fields except username

Assumptions: adsPath is never null

Side Effects: removes the user from the global update

list when done

Modifications:
By Date Purpose
----------------- -------- ----------------
-----john doe 12/12/03 Initial
Creation

- */

CDHS Web-Based Application Architecture Standards and Processes

Page 103 of 199 Version 3.0

Simple get/set functions can use a simple header rather than the full header above
/* --
Function: getUserList

Description: returns a list of users in alpha order
 List may be empty but never null
--
*/
private SortedList getUserList()

{ return (SortedLIst) Session(KEY_LIST) }

Creating Web Services and Database References

It is very important to create all references in a way that they can be easily
modified as the code is compiled and moved through the development, test and
production process. In the current ITSD n-tier hosting environment the
presentation layer will access all business logic though web services, so it is very
important that the web proxies are created to use dynamic URLs. To allow for the
web proxies to communicate correctly with the proper web services the
configuration files must point to the proper location. This is accomplished
through the use of an itsd.config file. This file will be managed by the IU for use in
deploying solutions. This will allow the IU to deploy successive solutions in a more
robust and consistent way.

The following steps detail the process of creating and calling web services via
web references that are controlled via an itsd.config file.

1. Set the URL Behavior property of your Web service references to
dynamic to gain maximum configuration flexibility both within the
development and production environments.

2. In the web.config file set file=”ITSD.CONFIG in the appSettings node as:
<appSettings file="itsd.config">

3. Create a sub folder in your project named ITSD and place an
ITSD.CONFIG file in it using the below format

a. Copy any items in your web.config file that need to be modified when
deployed into the itsd.config file. (IU will modify your entries correctly
when deployed.)

For Web Services this will usually contain items such as a connection strings

<?xml version="1.0" encoding="utf-8" ?>

<appSettings>

<add key="YOUR_CONNECTION" value="Data Source= Catalog=… />

CDHS Web-Based Application Architecture Standards and Processes

Page 104 of 199 Version 3.0

</appSettings>

For Web Apps this will usually contain items such as a URL(s) to web services

<?xml version="1.0" encoding="utf-8" ?>

<appSettings>

<addkey="Demo.DemoService" value="http://localhost/Demo/DemoService.asmx" />

</appSettings>

4. Check this file into SourceSafe.

Update this file if you add or remove any items from your web.config file that also need
to be in this file. Notify the Internet Unit if this file has been modified to add new keys or
delete old keys.

Connecting to the database in the current ITSD n-tier model is
conducted via the Data Access Layer (DAL). ITSD has chosen
to handle all connections to SQL Server via the DAL, which is
a modified version of Microsoft’s
Microsoft.ApplicationBlocks.Data.dll. The connection settings
will be created in the same manner as listed above for web
services

CDHS Web-Based Application Architecture Standards and Processes

Page 105 of 199 Version 3.0

Section VIII Application Coding Best Practices

CDHS Best Practices for .NET Applications

The following sections are intended to provide developers with general best
practices for developing .NET Applications regardless of hosting entity.
Applications developed on behalf of or by CDHS staff are expected to follow
these practices whenever feasible and not in conflict with CDHS Standards.

This information is available on Microsoft’s web site by searching for “Patterns
and Practices” and may not reflect the adopted methods for hosting applications
at CDHS. See References for a list of documents that provide a more detailed
view of the items presented here.

Microsoft Application Blocks

Overview

An application block is a fully tested .NET component written by experienced
Microsoft .NET programmers. Each comes with full source code and is available
for free on the Microsoft web site. Using Application Blocks reduces the amount
of custom code needed on a project and avoids duplicating many hours of
programming, testing and debugging, that Microsoft has already done.
See http://msdn.microsoft.com/library/en-us/dnbda/html/daab-rm.asp

Data Access Application Block (for SQL Server only)

The Data Access Application Block contains optimized data access code that will
help you call stored procedures and issue SQL commands against a SQL Server
database.

Exception Management Application Block

The Exception Management Application Block provides an extensible framework
for handling exceptions. You can easily log exceptions to the Event Log, other
data sources or notify operators, without affecting your application code.

CDHS Web-Based Application Architecture Standards and Processes

Page 106 of 199 Version 3.0

Database Access

Data Access Block

If using SQL Server than always use the MS - Data Access Block described
above.

Connection Pooling

Always take advantage of connection pooling by using the same exact connection
string on all connections made in an application.

1. Setup a new user account on the DBMS to be shared by all connections
(always use the lowest privileges needed)

2. Store the connection string encrypted in the web.config file, so it can be
shared and also be secure

3. OPEN Connections just before using and always CLOSE connections as
soon as you are done. (best to put code in a Using block to be sure
connections are closed)

Data Reader

If you are just reading data and do not require disconnected recordsets, do not
need to update the data and do not need to move randomly through the data, then
always use the Data Reader class for speed (provides a forward only Fire Hose
cursor).

Preventing SQL Injection Attacks
1. Always use the parameters collection, do not concat sql statements from

user input
2. Replace apostrophe with double apostrophe: input.Replace(“’”, “’’”)
3. Limit the length of any user input to the max length of the column being

queried
4. Remove any sql comment characters “—“ from the input
5. Always run using a least privileged account. (Use the minimum privileges

needed only)

Definitions

Pascal Casing Defined

CDHS Web-Based Application Architecture Standards and Processes

Page 107 of 199 Version 3.0

This convention capitalizes the first letter of each word, as in BackColor.

Camel Casing Defined

This convention starts each word in lowercase and then capitalizes the first letter
of each word, as in backColor.

Project Namespaces

Use a common root namespace name. The root namespace into which you place
your types (structures, classes, interfaces, and so on) should match the project and
assembly name. This should also match the folder structure for the project. While
.NET does not require this alignment, it makes sense to synchronize names
because it then becomes easy to tell which types live in which assemblies.

Note: Microsoft Visual Basic® .NET projects expose the root namespace via
project properties. By default, any type created within the Visual Basic project
will be placed inside this namespace. If you use explicit namespace statements
in your Visual Basic .NET project, delete the root namespace entry, otherwise
the explicit namespace name is appended to the root namespace name.

C# projects expose a default namespace property via project properties. This is
again used to determine the namespace into which new types added to the project
are placed. However, unlike Visual Basic .NET projects, the root namespace is
explicitly stated via namespace statements within your source files.

Example of Namespace matching Assembly name:

Namespace: MyCompany.Utilities.Data
Assembly: MyCompany.Utilities.Data.dll

Example of Namespace matching directory structure:
 IUProjects.ProjectName

IUProjects.ProjectName.Data
IUProjects.ProjectName.Data.SqlServer

The projects directory structure on disk should match this layout:

 D:\Inetpub\Applications\IUProjects
\ProjectName

\Data
\SqlServer

NOTE: If you have more than 1 namespace in a small project and you are only
creating one assembly file then name the assembly as per the ROOT Namespace.
In the above example this would be: IUProjects.ProjectName

CDHS Web-Based Application Architecture Standards and Processes

Page 108 of 199 Version 3.0

Function Names

public and protected methods are Pascal Cased

private functions are Camel Cased

Name the function as per its functionality and not as per any specific algorithm or
access method. Do not use Underscores in function names.

Good Example:

public bool UpdateClient();
private bool updateClientsAddress();
protected bool UpdateClient();

 Bad Example:

 public bool UpdateClientDataset()

private bool updateClientsAddressArray();
public bool Update_Client()

Constant Names

Constant names follow the rules for member names so that they can be easily
identified. Begin each name with: “Const.” Note that Private Constants may be
all UPPERCASE and contain underscores if desired.

Example:
 public const double ConstPI = 3.1415;
 public const string ConstFirstName = “Bob”;
 private const string LAST_NAME = “Jones”;

Public and Protected Class Variables

Use Pascal Casing

Example:
 public int AmountOfLoan = 0;
 private int MaxSpeed = 0;
 protected int BadLoan = 999;

CDHS Web-Based Application Architecture Standards and Processes

Page 109 of 199 Version 3.0

Private Class Variables

Use Camel Casing and begin with an Underscore.

Example:
 private int _maxSpeed = 9999;

Control Names

Use these prefixes to name controls consistently:

⇒ Table XVI Control Names

Control Prefix
Button cmd
Calendar cal
CheckBox chk
CheckBoxList cbl
DataGrid dg
DataList dl
DropDownList cbo
HyperLink lnk
Image img
Label lbl
ListBox lb
Panel pnl
RadioButton opt
Table tbl
TextBox txt

Code Structure

 The goal is to make the code easy to read and understand.

• Use whitespace to separate sections of code
• Use tabs to indent and align code sections

Example:

string name = getUserName();
int count = getCount(name, cMaxCount);

for (int i=0; i < MAX_SZ; ++i) {

 count += i;

 doSomeWork(count);

CDHS Web-Based Application Architecture Standards and Processes

Page 110 of 199 Version 3.0

}

Finalizers

Implement IDisposable and/or a Finalizer according to the following:

⇒ Table XVII Implementing Finalizers

Your class holds onto IDisposable Finalizer
Only managed resources that
do not implement IDisposable
or have any way of being
closed

NO NO

Only managed resources, but
some implement IDisposable
or can be closed in some way

YES NO

Both managed and
unmanaged resources

Yes Yes

Only unmanaged resources Yes Yes

Finalizers place a heavy burden on the Garbage Collector and therefore should be
avoided if possible. Only implement a Finalizer when you are holding onto
Unmanaged resources that need cleaning up. Any class that implements a
Finalizer should also implement the IDisposable interface to announce to the
world that users of this class should explicitly call the dispose method when they
are done. When coding a Finalizer, always use the accepted Finalizer pattern.
See the IDisposable topic in the Visual Studio .NET MSDN Help file for more
information.

Wrap Finally Clauses that Restore Security-Related State in
an Outer Try Block

Finally clauses that restore security-related state will be wrapped in an outer try
block to prevent an exception filter further up the stack from executing before a
secure environment can be restored. If sensitive operations such as impersonation
occur in the try block, and an exception is thrown, the filter can execute before the
finally block. For the impersonation example, this means that the filter would
execute as the impersonated user. Filters are currently implemented only in
Visual Basic.

try {
 // Do some work.
 Impersonator imp = new Impersonator(John Doe);
 imp.AddToCreditCardBalance(100);

} finally {
 // Reset security state.

CDHS Web-Based Application Architecture Standards and Processes

Page 111 of 199 Version 3.0

 imp.Revert();
}

The following psuedo-code shows the pattern you can use to protect your
code.

 try {
 // Do some work.
 } finally {
 // Reset security state.
 }

} catch() {
 throw;
}

LinkDemand Security Checks on Types do not Protect
Access to the Type's Fields

Use public properties NOT public fields. Fields must be secured with a security
check other than LinkDemand.

// This code requires immediate callers to have full trust.
[System.Security.Permissions.PermissionSetAttribute(System.Security.Permissio
ns.SecurityAction.LinkDemand, Name="FullTrust")]

public class SecuredTypeWithFields {
 // Even though the type is secured, these fields are not.
 public double xValue;
 public double yValue;

 public SecuredTypeWithFields (double x, double y)
 {
 xValue = x;
 yValue = y;
 }
 public override string ToString()
 {
 some code….
 }
 }

A caller with full trust may create an instance of this type and return it to another
caller that does not have full trust. In this case the first caller without full trust
may access the public fields but cannot access the public methods.

CDHS Web-Based Application Architecture Standards and Processes

Page 112 of 199 Version 3.0

Short Circuiting in VB

If desired, in VB you may use AndAlso - OrElse to short circuit evaluation of an
expression.

Do not use this feature if one of the expressions is a function call, as it may
behave as expected.

For example:
 If (x AndAlso y > 9) then Ok()

‘ Func() will never be called if x is False
 If (x AndAlso Func(12) > 0) then BAD()

Saving State

Page and object state can be saved on the Server and/or on the Client. These
choices are made depending on the load expected on the server, the amount of
memory on the server, security, scalability and more. Each method has its trade
offs.

View State

May be encrypted and signed for more secure data transfer (requires all servers in
a farm to contain the same encryption configuration setting) This puts the state on
the client machine and does not over burden the servers memory BUT it does
increase the page size, lowers the throughput and puts more strain on network
resources across possibly many network hops.

 Do not use view state, except for small amounts of data.
 Turn off View State in all controls that do not require them (e.g. Labels)

NOTE: if you need to capture the OnChange Event for a control leave it’s
ViewState ON

Application Cache / Application Object

1. Use this for data that is shared by all users of the application.
2. If the data is static use the Application Object.
3. If the data changes often then use the Application Cache.
4. Use your judgment as to how much data should be held here as this does

use up memory on the server.

CDHS Web-Based Application Architecture Standards and Processes

Page 113 of 199 Version 3.0

Session State

This should be used only for very small pieces of data such as boolean flags or
ID numbers. Anything larger should use other methods to save memory. On a
web farm this also requires using SQL Server State Service.

SQL Server / NT State Service

These methods must be used to when using session state on a web farm, else the
user may be load balanced to a different server and lose any session state data.

1. State Service: leaves DB Server more available, much faster, lose data on
re-boot

2. SQL Server: extra load on DB, slower, retains data after re-boot so more
secure

Base Page Class

Always use a base page that inherits from the .NET Page class. All other pages in
the application should inherit from this base page. This will save duplicating
functionality on each page and provide a more robust and traceable application.

The base page should centralize all common functionality needed, such as:

1. Exception Handling
2. Page Navigation / Passing and receiving data between pages
3. Encryption / Decryption
4. Security checks

Isolate Dependencies

Use wrapper methods for code that depends upon special algorithms, storage
mechanisms, etc. to allow ease of modification. This would include such things as
saving state.

For example rather than doing this:

 SomeFunction()
 Session[DATA_KEY] = dsClients; // save a dataset in session

Do this:
 SomeFunction()
 saveState(dsClients, DATA_KEY)

 saveState(object data, string key)

CDHS Web-Based Application Architecture Standards and Processes

Page 114 of 199 Version 3.0

 Session[key] = data

 object restoreState(string key)
 return Session[key];

This will allow you to change where you are saving state without making
modifications throughout the code. It also allows you to add specific error
handling and any pre and/or post processing in one place.

List Management

Three controls are provided to manage lists on a web form.

 DataGrid
 DataList
 Repeater

Each control has its pros and cons related to built-in features and speed and
scalability. The following is recommended based on test results:

 DataList
o Use this as the 1st choice UNLESS it does not offer functionality

needed
 DataGrid

o Use only if cannot use the DataList because of missing
functionality

 Repeater
o Use when the DataList is too slow for your needs

Test Results for Binding 100 records from a database:

 #Requests per second supported

DataGrid 12 (slowest but most functionality)
DataLIst 17 (slower but more functionality than repeater)
Repeater 22 (fastest but not much functionality)

Data Binding

Three ways to bind data to a control exist:

1. Inline formatters (fastest)
2. Member Methods (slower but not by much)
3. Event Handlers (slowest)

CDHS Web-Based Application Architecture Standards and Processes

Page 115 of 199 Version 3.0

It is recommended to use Member Methods for the following reasons:

1. Can format data using code rather than be limited to format expressions
only

2. Can compare other elements or form controls to change rules on the fly
3. Is basically cleaner as all code is in code behind

Usage:

In the Item Template section of the control

 <ItemTemplate>
 <td><% #ShowData(Container.DataItem, “ClientName” %></td>
 <td><% #ShowData(Container.DataItem, “ClientPhone” %></td>

In the code behind for the Page

 Public string ShowData(object data, string columnName) {
If (columnName == “ClientName”) return data[columnName
].ToString().ToUpper();
 etc. for each field format as desired

Web Services

Chunky Calls

Use chunky calls to remote objects. This lowers the number of calls that need to
be made and improves throughput and uses less server resources.

Example:
 Non-Chunky calls:
 Obj.SetName(userName);
 Obj.SetAddress(address);
 Obj.SetPhone(phone);

 Instead use:
 Obj.SetData(username, address, phone);

Asynchronous Calls

If possible use Asynchronous Calls to allow the UI to continue working,
especially if the called function does not return any data.

MarshallByRef

If possible, always marshal by reference.

CDHS Web-Based Application Architecture Standards and Processes

Page 116 of 199 Version 3.0

Distributing Type Information to the Client

There are three ways to distribute type data to the client for MarshallByRef
projects.

1. Simply copy the whole Assembly to the client
a. Not recommended
b. Puts full source code on client
c. Harder to tell if remoting is setup correctly (client will

use the local assembly even if setup is wrong)
2. Code to Interfaces and distribute the interface to the client

a. No source code on client
b. Requires coding to interface, so may need a Factory

object to create the object on the server or use the
Activator class to create objects.

c. Distribute interface to clients
3. Create a meta-data assembly using the soapsuds tool and

distribute this assembly to the client
a. No source code on client
b. Best choice if not already coding to interfaces

Web Service Proxy Creation

Using VS.NET to create the proxy will hardcode the referenced URL into the
proxy. Instead use the WSDL .exe tool to create a proxy that will read the URL
from web.config as:

Wsdl.exe /urlkey:

UrlRoot baseurl:http//localhost/
http://localhost/web/service.asmx?WSDL

Web.Config entry in <appSettings> section as:

<add key=”UrlRoot” value=”http://localhost/” />

Change the value of this key to point to another server as needed. Use the IDE to
create the reference when developing BUT drop the reference and create a new
one using wsdl when ready to deploy to QA or Production.

Note: Type WSDL at the .NET command prompt to get help on available
options.

CDHS Web-Based Application Architecture Standards and Processes

Page 117 of 199 Version 3.0

Caching

If possible, Cache any data that requires time and resources to re-create.

Security

Passwords / Connection Strings / Sensitive Data

1. Always encrypt sensitive data.
2. Use aspnet_setreg.exe or the DPAPI to encrypt any sensitive data in the

web config file
3. Lock an account after x number of failed logons
4. Restrict Concurrent logons (re-logon to a session from a different IP

address)

Database Accounts

1. Never use an administrative account to log onto the database.
2. If not using ACL’s and windows log on in an intranet situation then

always create a new service account with the minimum rights needed by
the application.

3. A service account will also allow all users to share the same logon and
take advantage of connection pooling.

4. The account will have only execute rights to the stored procedures and no
base table access.

Code Security

1. Always use CAS to DEMAND that the caller has permissions to access
system resources.

2. Use an Obfuscation tool to encode assemblies before release to production

Web Config Security Settings

1. Use URL Authorization to Allow/Deny specific users or roles
2. Use the CustomErrors section to define a default Error Page
3. Set the MachineKey element to the same value for all web servers in a

web farm

Note: Use aspnet_setreg.exe or the DPAPI to encrypt any sensitive
data in the web config file

CDHS Web-Based Application Architecture Standards and Processes

Page 118 of 199 Version 3.0

Security Testing and Tools

1. Security test all applications before deployment to production
2. Test the apps configuration for weaknesses
3. Use the security tools provided by Microsoft (e.g. FxCop) to help find

problems

Security Tools: http://msdn.microsoft.com/security/downloads/tools/default.aspx

Isolated Storage

This is NOT a secure storage area and should NOT be used to store sensitive data
that is not encrypted.

Component Deployment

1. Place all sensitive code and data (Business and DAL) behind a firewall,

accessible only by known and trusted accounts
2. UI Layer in the DMZ (No sensitive data or functionality in this layer)
3. Business and Data layers behind a firewall, using IPSec to allow only

access from the DMZ Server. (OR can also use SSL with code access
security and strong names to demand caller has the correct permissions
and/or is a known application)

Security Policy

Be aware that the security policy setup by the network administrators will affect
all code running on the network. You must coordinate any special permission
your app requires with this policy.

Configuration Files

Reading Data

1. Reading data from the web.config file must be done so as not

to create any un-handled exceptions at runtime because of
missing data.

2. Always read the data and check for null values or always

supply an empty string as:

CDHS Web-Based Application Architecture Standards and Processes

Page 119 of 199 Version 3.0

 String connect = AppSetting[“DB_CONNECT”] + “”;

3. Create a function that is called at startup to read and check all

setting that the application cannot do without, throw a custom
exception (display only non-sensitive data to user) if any data
is missing

private void CheckConfigValues() {
String connect = AppSetting[“DB_CONNECT”] + “”;
If (connect.Trim().Length == 0) throw new
CustomException(“Missing Connection info”);

Development Settings vs. Production Settings

To allow the web.config file to hold production setting and still use development
settings during development without changing the web.config use the FILE
attribute to point to a file that holds only development settings.

Example:
 Web.config

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings
file=”devsetting.config”>
 <add Key=”Connect”
value=”Production Settings here” >

devsettings.config
 <appSettings>
 <add Key=”Connect” value=”Development Settings here”
>

NOTE: the devsetting.config file only has the <appSettings> section, no other
sections are needed or allowed. At runtime ASP.NET will see the FILE attribute
in web.config and will look for an existing devsetting.config file to read the data
from. If the file does NOT exist data will be read from the web.config file. When
deploying to production do not deploy the devsetting.config file

NOTE: Changes to the devsettings.config will NOT cause a ASP.NET to
recompile the application and your new setting will NOT be picked up unless you
restart IIS –or- modify a line in the web.config file as:
 <add Key=”Dummy” value=”Modified 10-10-2003” >
 just change the date to get ASP.NET to pick up the changes

CDHS Web-Based Application Architecture Standards and Processes

Page 120 of 199 Version 3.0

ASP.NET Worker Process Identity

The asp.net worker process runs with limited permissions to protect the system.
DO NOT change the identity in machine.config. This is a job for a system
administrator only. It affects all applications on the machine.

User Interface Layer

General

Authentication

Authenticate users in this layer and if needed pass to Business Layer with a
custom principal object or other mechanism as per the Hosting application and
transport being used (e.g. channel sinks, soap header).

Exception Handling

Provide a method to handle all un-handled exceptions in the UI Layer and all
other layers.

Business Emissary

To avoid cross-app domain calls simple business logic like formatting and user
input validation may be moved into a separate class in the UI layer known as a
Business Emissary. This will keep all this type of logic in one central location in
the UI layer and avoid expensive calls across app domains.

This emissary class should be the only gateway to the Business component. All
calls from the UI to the business layer should go through this class. This class
either handles the request directly or it calls into the business layer directly (to get
the requested data, or perform a requested operation).

This emissary class may know a little about both the UI and Business layers. For
instance, functions that map database columns to form controls may be placed
here.

NOTE: No sensitive information should be kept in this emissary class, unless
encrypted.

CDHS Web-Based Application Architecture Standards and Processes

Page 121 of 199 Version 3.0

Business Layer

General

Exception Handling

Trap All Exceptions. Bubble Up any un-handled exceptions to the UI layer.

Service Interface

If this component is used by many applications you may want to provide a service
interface layer to enable upgrades and modifications without breaking existing
code. See below for more.

Service Interfaces

A Service Interface provides a way for clients to call into an application service
indirectly. This interface provides:

1. Shields the client from any changes made to the interface.
2. Allows a central place to call many services from
3. Central place to perform any logging, auditing, and

authentication needed.
4. A façade to implement business tasks

a. User may make 1 call to a function that in turn may call
to 1 or more actual services to complete the process as
per the business rules.

b. To expose the same services to different callers that
may require different authentication or SLA
requirements

c. To provide a central place to deal with possibly
different communication channels used by different
clients (e.g. soap, MSMQ, binary TCP)

CDHS Web-Based Application Architecture Standards and Processes

Page 122 of 199 Version 3.0

Passing Data to the Façade

Selecting a data type to use for passing arguments to a service interface depends
on too many variables to define a standard. The following are some suggestions:

1. Dataset
a. Create a row(s) of data to hold the parameters being

passed
b. Use the schema to provide information on the data type

of the parameter
c. You may also choose to return any values to the client

in a dataset as well
2. ArrayList / SortedList

a. Each element can hold any object type
b. Use a Name Value collection to hold parameter names

and values

Transaction Management

Your service interface will need to deal with a channel that provides transactional
capabilities (such as Message Queuing) or one that doesn’t (such as XML Web
services). It is very important that you design your transaction boundaries so that
operations can be retried in face of an error. To do so, make sure that all the
resources you use are transactional, mark your root component as “requires
transaction,” and mark all sub components as either “requires transaction” or
“supports transactions.”

With transactional messaging mechanisms, the service interface starts the
transaction first and then picks up the message. If the transaction rolls back, the
message is automatically “unreceived” and is placed back in the queue for a retry.
When using Message Queuing, Enterprise Services Queued Components, or
Message Queuing Triggers, you can define a message queue-and-receive
operation as transactional to achieve this automatically.

If you are using a messaging mechanism that is not transactional (such as XML
Web services), you need to call the root of the transaction from the code in the
service interface. In the case of a failure, you can design the service interface code
to retry the operation or return to the caller an appropriate exception or preset data
representing a failure.

CDHS Web-Based Application Architecture Standards and Processes

Page 123 of 199 Version 3.0

ASP.NET Performance

This section will describe ways to increase the performance of your asp.net
application.

View State / Session State / Application Cache / Application
object

1. Turn OFF Viewstate in any controls that do not need it (e.g. labels,
datagrids that are always re-filled on postbacks anyway, etc.)

2. Store only Value Types in Viewstate , Session State, Cache, and
Application. Or store Reference Types that are Serializable only.

a. Add the [Serializable] attribute to any custom objects being
stored

3. Avoid use of the Application object as it requires locking and
unlocking to access objects. Use the Cache instead.

4. Cache Callbacks – DO NOT create a callback function for the
cache in the Page class. This will cause the page (fro each user) to
remain in memory for the duration of the cache. Instead create a
separate class with a static (shared in VB) callback function. This
can be shared by all pages in the application and will avoid a build
up of pages in memory.

5. Another option for storing Application level data is to use the
Global.asax file. Create a static (shared in VB) variable to hold
your data and fill it in the Application_OnLoad event. This keeps
the data in memory and allows for faster access. (Note: balance
this against the size of the data being stored)

Page Event Processing / Page Directives
1. Avoid creating custom events for controls

2. Page_Load: Always check IsPostBack in the Page_Load event, to
avoid any duplicate processing of data. For example, if you load a
dropdown list from a database, this list will be saved in viewstate,
so there would be no need to re-query or re-fill the list on Post
Backs

3. Page_PreRender: This is the best place to bind any data to avoid
binding more than once (e.g. in Page_Load and again in the

CDHS Web-Based Application Architecture Standards and Processes

Page 124 of 199 Version 3.0

ItemCommand event of a datagrid, which both fire on a postback
event from the datagrid)

4. Eliminate all possible processing that is not needed in event code.
(e.g. use a separate server side process to handle computations etc.
that are not needed immediately in event code)

5. Page_Unload: use this event to explicitly DISPOSE of any
resources (close files, connections etc.) All Server Control also
implement a dispose method, calling this method explicitly will
allow the resources to be cleaned up quicker than waiting for the
variable to go out of scope.

6. Smart Navigation – set this to true in the page directive. Although
this will only achieve gains in IE 5.0+ browsers it will have no bad
side affect in other browsers.

a. <@Page Language=”vb” smartNavigation=”true” %>

Perceived Performance

1. Page Loader: Use a Page Loader for any pages that take a long
time to load. This will allow the user to perceive that something is
being done rather than nothing is being done.

a. A sample Page Loader is available in the ITSD samples in
source safe database: DemoPageLoader – you can
include this page in your app as needed. See the source
code for details

2. Background Processing and IFrames : If you have a page that
contains some static data as well as dynamic content and the
dynamic content takes a while to load then: Use IFrames to load
the dynamic content as:

a. <iframe id=”frmDetails” style=”..” src=”details.aspx”>
</iframe>

b. You may also include a call in the iframe to the
PageLoader above so that the user will see something
happening while it is loading.

3. Page Caching: Cache dynamic pages that can possibly be made
“static” for a duration of time. For example a page that hits the
database for a list that will probably not change for at least 1 hour
can be cached for 1 hour to avoid hitting the database again as:

<%@ OutputCache Duration=”3600” VaryByParam=”none”>

CDHS Web-Based Application Architecture Standards and Processes

Page 125 of 199 Version 3.0

 Note: see VaryByParam in MSDN Help for more options

4. Partial Page Caching: Use partial page caching for Menus,
Sidebars etc. that are static in nature. Create User Controls to hold
these items for page caching.

NOTE: never try to access a user control (that is cached) in your

code. The only safe access is in the user control code itself. This is

usually not a problem as you will only need to respond to the

events the control produces anyway.

5. URL’s

a. Use Relative URL’s to transfer control to pages in your app

b. Use an ending backslash “/” when requesting a default page
(when not including the page name in the URL) . This will
save a roundtrip from the server to the browser.

Exception Handling

Avoid Try Catch statements that are not needed. Do not depend on throwing an
exception to catch a possibly known error. Test for any known errors in code. For
example the following code is a bad way to determine a value of zero

Try {

 int x = y/z; return x;

} catch(DivideByZeroException ex) {

 return 0;

}

INSTEAD use:

 if (z != 0) return y/z;

 else return 0;

NOTE: This does not imply that you should not use exception handling. Just be
aware that it consumes more resources than a simple check you can do yourself
for know issues like null pointers, divide by zero etc.

Web Services

1. Execute web services asynchronously. As the web service
automatically provides methods to accomplish this it is easy to

CDHS Web-Based Application Architecture Standards and Processes

Page 126 of 199 Version 3.0

implement and will allow your app to not hang while waiting for a
slow connection or service or failed connection etc.

2. Cache web service return values that do not change over a short
period of time to avoid calling the service again. This can be done
using the Application Cache or by setting it in the web method
itself as:

a. <WebMethod(CacheDuration:=120> Public Function
GetData()

3. Set the Timeout property to insure you do not wait too long for a
web service to return data.

Dim obj as New localhost.ServiceName

Obj.Timeout = 10000

4. Loading Images – Example: you have a datagrid that is filled with
some information and for each row in the grid an image file is also
required and the image is retrieved from a web service.

a. Add a template column in the grid for the image and in the
template add the following code:

<img src=”LocalDefaultImage.gif”

Onerror=”javascript:this.src=’LocalDefaultImage.gif’”

Onload=”javascript:this.src=’GetImage.aspx?id=<%#Conta

iner.DataItem(“id”)%>’;”>

Where GetImage.aspx calls into the web service to retrieve
the image. This allows the image to be loaded in the
background while the user can view the other data in the
grid. LocalDefaultImage is a small gif file in the local
directory that acts as a placeholder while the image is being
loaded.

Code Optimizations

1. Early Binding In VB: use Option Strict so as to force declaration
of types for all variables. Late binding occurs when a variable is
declared as: dim s, the runtime must then use reflection to get the
correct type. Always declare variables as: dim s as String

2. Evalutaions: use AndAlso / OrElse constructs to short circuit
evaluations

CDHS Web-Based Application Architecture Standards and Processes

Page 127 of 199 Version 3.0

3. Boxing: Avoid boxing when possible. For example if you know
the number of items you are saving use an array of the type rather
than an ArrayList. If you must use an ArrayList then use the
constructor to initialize a starting size as: new ArrayList(1000) to
improve performance somewhat.

4. Strings – If doing many concatenations on a string use the
StringBuilder object instead of a String object (which creates a
new string each time)

5. SQL Command Builder – Avoid using the command builder for
production applications. This requires extra queries against the
database to create the commands. Use them for testing only then
create your own sql manually for production.

CDHS Web-Based Application Architecture Standards and Processes

Page 128 of 199 Version 3.0

Section IX SQL Best Practices

This section provides a framework to aid in optimal usability of the Microsoft
SQL Server 2000 schema, scripts and stored procedures developed for
applications by defining a reasonable, consistent and effective coding style.

This framework serves to improve the application without unnecessary impact on
development and unnecessary controls on personal coding preferences. For these
reasons the framework focuses on identifier naming conventions that are intended
to be used by all developers, general style guidelines indicating the preferred
format and usage of SQL language components, and a definition of the database
development methodology.

CDHS Web-Based Application Architecture Standards and Processes

Page 129 of 199 Version 3.0

Identifiers

This framework focuses on identifier naming conventions that are a preferred
format by ITSD SQL Server Unit and are intended to be used as a best practice in
coding.

Case
• Use all upper case for table and view names
• Use mixed case for column names and variables
• Use mixed case for stored procedure name
• Use lower case for other names except use the same case as indicated

above where a table or column is used in another object’s name

Prefixes and Suffixes

Use the following standards for prefixes and suffixes.

Database Objects

• Use the following standard prefixes for database objects:

Object type Prefix Example
Primary key Clustered pkc_ pkc_MY_TABLE__Column

Primary key Nonclustered pkn_ pkn_TB_TABLE__Column_List

Index Clustered ixc_ ixc_TS2_TABLE__Column

Index Nonclustered ixn_ ixn_TB_TABLE__Column_List

Foreign key fk_ fk_THIS_TABLE__ColumnB__to__TB_PKEY_TABLE__ColumnA

Unique Constraint unq_ unq_TB_TABLE__Column_List

Check Constraint chk_ chk_TB_TABLE__Column

Column Default dft_ dft_TB_TABLE_Column_List

Passed Parameter @p @pPassedVariableName

Local Variable @ @VariableName

Table TB_, *_ TB_TABLE_NAME (see detail below)

View VW_ VW_NET_ACTIVE_UNITS

User Defined Scalar Function ufs_ ufs_return_value_name

User Defined Table Function uft_ uft_TB_TABLE_NAME

Stored Procedure usp_

Eds_Def (Note: Stored Procedures CANNOT be
prefaced with SP_ as these have special meaning
and execution rules in SQL server). Example:
usp_search_county

Scripts

• Use the following standard prefixes for scripts:

CDHS Web-Based Application Architecture Standards and Processes

Page 130 of 199 Version 3.0

Script type Prefix Example
Stored procedure script PROCEDURE_ PROCEDURE_Calendar.sql

Schema script SCHEMA_ SCHEMA_Calender.sql

Conversion script CONVERSION_ CONVERSION_Schedule.sql

Rollback script ROLLBACK_ ROLLBACK_Schedule.sql

• Save all scripts using the .sql extension
• All other suffixes should be whole words

Name, Type, Flag, etc. …

Stored Procedures

• Stored procedure names ought to reflect the name of the primary data
source, the action the procedure accomplishes, and the audience that uses
the procedure.

o Generally, the best table name is the one that represents most of

the data or the primary join table.
o The audience might typically be one of the following:

 Import
 Export
 Custom
 Operations
 Report
 System (not directly available to the front end)

• Do not create a user stored procedure with the “SP_” prefix. This has a
specific meaning in SQL Server and could negatively impact performance.

• Avoid abbreviations where possible, although acronyms that have
meaning to the business are acceptable.

Tables

Create Table

• All objects in the production database are owned by (DBO). Developers
should not create objects own by his/her accounts.

• Add the primary key as a first element (or elements if a composite key)
when creating a table

o In many cases it is easier to script the table in multiple steps. The
first script creates the table and columns. The second script adds
the indexes and constraints. This is not only easier to read in some

CDHS Web-Based Application Architecture Standards and Processes

Page 131 of 199 Version 3.0

cases but also helps if you have to drop indexes on a table to do a
fast BCP operation etc…(because you already have the script
isolated and identified).

• Object names should include underscores between words.
• Name all tables in the singular form.

TB_CALLING_CARD not TB_CALLING_CARDS

• If a column references an Id in another table, use the full table name. For
example, use Title_Id in table TB_AUTHOR to reference column Id or
Title_Id in table TB_TITLE.

• Explicitly name constraints. A table or column constraint name will
include the table name(s) that it references and the columns affected by the
constraint. Separate each table and column in a constraint name with two
underscores (__) to differentiate from the single underscore (_) that may
be within the table or column’s name.

• A foreign key name will identify both tables participating in a foreign key,
the column(s) involved in the relationship, and the direction. The foreign
key table (table where constraint is attached) appears first.

fk_TB_COURSE__Educator_Id__to__TB_USER__Id

• Default constraints must be defined at the column level.
• Define all Constraints other than defaults at the table level.
• Avoid rules, database level defaults that must be bound, or user defined

data types. While these are legitimate database constructs, opt for
constraints and column defaults to hold the database consistent for
development and conversion coding.

• Never use a SQL Server reserved word as an identifier name. (Refer to
SQL Server Books on Line for a complete listing).

Altering Tables

• alter table should be used in scripts that will be used for upgrading
existing table, not when creating tables.

• Use the following outline to drop an existing column or table constraint:

CDHS Web-Based Application Architecture Standards and Processes

Page 132 of 199 Version 3.0

If (objectProperty(object_id('{constraint
name}'),

'IsConstraint') is
not null)

alter table {table name}
drop constraint {constraint name}

• Use the following outline for adding or changing an existing column or
table constraint.

Example

If (objectProperty(object_id('{constraint name}'),
'IsConstraint') is

null)
alter table {fully qualified table name}

add constraint {constraint name}
default {constraint value}

[for {column name}]

• Use the following outline to drop an existing column.

Example

If (ColumnProperty(object_id('{table name}')
,{column name},
'AllowsNull') is not null)

alter table {fully qualified table name}
drop {column name}

• Use the following outline for adding a column.

Example

If (ColumnProperty(object_id('{table name}')
,{column name},
'AllowsNull') is null)

alter table {fully qualified table name}
 add {column name} {data type} {null | not
null}

[constraint {default name}
default ({default value})]

CDHS Web-Based Application Architecture Standards and Processes

Page 133 of 199 Version 3.0

Indexes

• Use the following outline for creating Indexes

Example

create {clustered | nonclustered} index {index name}
on {fully qualified table name}
({column list})
{options}

create nonclustered index ixn_TB_TICKET__Expire_Dt

on Events.dbo.TB_EVENT(Expire_Dt)

o Explicitly name all indexes and include the table name and all
indexed columns in index order.

ix{c | n}_{table name}__{column name}[__{column_name}[..]]

Example
ixn_TB_DISTRIBUTOR_Name
ixc_TB_ACTIVITY__Itinirary_Id__Active_Dt
ixn_TB_COURSE__Instructor_Id

Stored Procedures (and other DML scripts)

• Use the following outline for creating stored procedures

Example
use {database name}
if (objectProperty(object_id('{owner}.{procedure name}'),

‘IsPRocedure') is not null)
 drop procedure {owner}.{procedure name}

GO

create procedure {owner}.{procedure name}
 [{parameter} {data type}][,

…]
as
/***

CDHS Web-Based Application Architecture Standards and Processes

Page 134 of 199 Version 3.0

* PROCEDURE: {procedure name}
* PURPOSE: {brief procedure description}
* NOTES: {special set up or requirements, etc.}
* CREATED: {developer name} {date}
* MODIFIED
* DATE AUTHOR DESCRIPTION

*---
* {date} {developer} {brief modification description}
***/

[declare {variable name} {data type}[,
…]]

[{set session}]

[{initialize variables}]

{body of procedure}

return

{error handler}

• The owner of stored procedures should always be DBO to prevent broken
ownership chains.

• Do not use temporary stored procedures.
• Do not define default values for parameters. If a default is needed, the

front end will supply the value.
• Do not use output parameters. Any information returned to the client

should be done via a result set.
• Do not create stored procedures that return multiple result sets.
• Do not use the encryption option except as other wise noted above.

Note: SQL Server Unit requires to have access to the full source of the
stored procedures.

• Never use the recompile option in stored procedures.
• Place all declare statements before any other code in the procedure to give

the query optimizer the best shot at reusing query plans.
• Place set statements before any executing code in the procedure.
• Avoid calling stored procedures from stored procedures because error

handling is very unpredictable in such circumstances.
• Fully qualify all system stored procedures used in a stored procedure. This

will optimize performance as the system will never have to search for the
system procedure.

• Enumerate all column lists. Do not use the ‘*’ wildcard.

CDHS Web-Based Application Architecture Standards and Processes

Page 135 of 199 Version 3.0

• In order to capture two or more SQL Server global variables pertaining to
the same statement, declare a variable for each global to be identified and
assign all in a single select immediately after the statement. Capturing
more than one global variable one at a time will produce erroneous results.

Example

Declare @iRowCount int,
 @iError
Select Id from MyDB.dbo.MyTable
Select @iRowcount = @@rowcount,
 @iError = @@error
if @iError <> 0
 goto MyErrorHandler
if @iRowCount > 0
 delete MyDB.dbo.MyTable

Not

select Id from MyDB.dbo.MyTable
if @@error <> 0
 goto MyErrorHandler
if @@rowcount > 0 -- rowcount will be
about if @@error
 delete MyDB.dbo.MyTable

Error Handling

• Avoid abbreviations other than the specified prefixes and postfixes in error
messages.

• Use system messages stored in syscomments. Use the following outline
for messages:

{fully qualified procedure name} : {message}

Example
MyDatabase.dbo.MyStoredProcedure : A strange error has

occurred?

• Error messages should be added to the system using the following outline:
Developers will be required to provide this information to the SQL Server
Unit. If the application will be hosted on a system with other applications,
please consult with the SQL Server Unit for a unique message id.

CDHS Web-Based Application Architecture Standards and Processes

Page 136 of 199 Version 3.0

Example
sp_addmessage msg_id,
 severity,
 {message text}[,

{language}[,
 'with_log'[,
 'replace']]]

• Capture the fully qualified procedure name by inserting the following code
once at the beginning of each procedure that might raise the error:

Example

declare @sProcedureName varchar(255)
select @sProcedureName = db_name()

+ '.'
+
user_name(objectproperty(@@procid,'OwnerI
d')) + '.'
+ object_name(@@procid)

• Assign error message numbers based in the following

Example
o Reserved 50000 thru 50999
o General errors 51000 thru 51099
o Import errors 52000 thru 52099
o Export errors 53000 thru 53099
o Services errors 58000 thru 58099
o DbChangeControl Message 59000 thru 59099

Schema Scripts

 go is the standard TSQL batch separator. Do not write scripts that depend
on another separator. Go should appear on its own line of the script.

 Each def_ script should define only one table. The def_ includes all
constraints, keys, and indexes for the table. A def_ script only creates an
object. A def_ script must not drop statements.

 Proc_ and conv_ scripts should be able to be run multiple times against
the same database with no adverse effect and no errors. Always check for
the existence of each object before creating it again to avoid meaningless
errors in the scripts output stream.

CDHS Web-Based Application Architecture Standards and Processes

Page 137 of 199 Version 3.0

 An rbk_ script must accompany every conv_ script. As with the conv_
script, the rbk_ script must be written so that it will execute multiple
times with no adverse effects and no errors. The rbk_ script will reverse
or rollback all changes applied in the conv_ such that full a priori
functionality exists in all databases touched by the conv_ script.

Formatting

 Use single quote characters to delimit strings. Nest single quotes to
express a single quote or apostrophe within a string

set @sExample = ‘Bill’’s example’

 Use parenthesis to increase readability, especially when working with
branch conditions or complicated expressions.

if ((select 1 where 1 = 2) is not null)

 Use begin..end blocks only when multiple statements are present
within a conditional code segment.

 Limit the length of lines in all source code to 114 characters. If possible,
try to leave all code viewable without the need to horizontally scroll an
800 x 600 IDE window using a 12 pitch Courier New font – 100
characters.

 Indent one tab when indentation is required.

Whitespace

 Use one blank line to separate code sections.
 Do not use white space in identifiers

DML Statements (select, insert, update, delete)

 Use ANSI join syntax

select c.Name, a.Description
from User.dbo.TB_ADDRESS a
inner join VIOLATIONS.dbo.TB_INCIDENT i
On a.Id = i.Address_Id

CDHS Web-Based Application Architecture Standards and Processes

Page 138 of 199 Version 3.0

 Use ANSI operators

=, >, <, <>, in, exists, not, like, is null, and, or

 A correlated sub-query exists or not exists is preferred over the equivalent

in or not in sub-query.

 Avoid the use of cross joins if possible.

 When a result set is not needed, use syntax that does not return a result set.

If exists(select 1

from County.dbo.TB_LOCATION
where Type = 50)

rather than,
if ((select count(Id)

from county.dbo.TB_LOCATION
where Type = 50) > 0)

 If more than one table is involved in a from clause, each column name

must be qualified using either the complete table name or an alias. The
alias is preferred.

 Do not use the identitycol or rowguidcol
 Always use column names in an order by clause. Avoid positional

references.

 Select
• Do not use a select statement to create a new table (by supplying an into

table that does not exist).
• When returning a variable or computed expression, always supply a

friendly alias to the client.

select @@identity as Exam_Id,

(@pointsReceived / @pTotalPoints) as Average

• Opt for more descriptive alias.

select @@identity as UserId
is preferred over
select @@identity as Id

• Use the following outline for select statements. Each column in the select
list should appear on its own line. Each unrelated constraint within the
where clause should appear on its own line.

CDHS Web-Based Application Architecture Standards and Processes

Page 139 of 199 Version 3.0

Example
select {[alias.]column name}[,

 {[alias.]column name}[,
 …]]

from {database name}.{object owner}.{table name} [[{alias 1}]
[inner join {database name}.{owner name}.{table name} [{alias
2}]
on {alias 1}.{column name} = {alias 2}.{column name}[
{next join}]]
[where {constraint condition}
[and {constraint condition}
[…]]]
[group by {column [list]}

[having {constraint condition}]]
[order by {column [list]}]

[{union}
{next select statement}]

select t.Task_Id,

t.Course_Id,
t.Due_Dt,
t.Start_Time,
t.End_Time,
t.Name,
et.Completed_Flag,
et.Completed_Dt

from employee.dbo.TB_TASK t
inner join employee.dbo.ENROLLMENTTASK et
on t.Task_Id = et.Task_Id
where t.Due_Dt >= @pStartDate
and t.Due_Dt <= @pEndDate

and et.Member_Id = @pMemberId
order by t.Due_Dt, t.Start_Time

• When dealing with select statements used as conditions or sub-query, use
more convenient formatting than the outline above where necessary. One
line select statements are fine as long as they are easy enough to read.

• Dependent constraints within the where clause should appear together
offset by parenthesis. Use additional indentation if necessary.

Example
select t.TASK_ID
from Task.dbo.TASK t

inner join Task.dbo.ENROLLMENT et
on t.TASK_ID = et.TASK_ID
where et.MEMBER_ID = @pMemberId
and ((t.DUE_DT <= @pStartDate)

or (t.DUE_DT >= @pEndDate)
or (et.COMPLETED_FLAG = 1))

CDHS Web-Based Application Architecture Standards and Processes

Page 140 of 199 Version 3.0

Inserts

• Always list column names within an insert statement. Never perform
inserts based on column position alone.

• Use the following outline for insert statements moving values or variables
into a single row. Place each column name and value on its’ own line and
indent both so they match as shown.

Example
insert [into] {database name}.{owner}.{table name}

({column name}[,
{column name}[,
…}})

values
 ({value or variable}[, --{comment hard coded

value}
 {value or variable}[, --{comment hard coded

value}
 …]]

insert Parts.dbo.TB_Inventory
(TOASTER_ID,
MANUFACTURER_ID,
NAME,
NOTES)

values (1, -- example only
1, -- example only
'Blue card', -- example only
'designer card') -- example only

• Use the following outline for inserts that move data from one table to
another. Break and indent the column lists so they match. Apply the same
formatting to the from clause as described in the select statement.

Example
insert [into] {{database name}.{owner}.{table name} | {alias}}

({column name}[,
{column name}[,

…}})
select [{target column name =}]({column name}[,

[{target column name =}]{column name}[,
…}})

{from clause
[{where clause}]}

insert into Parts.dbo.TB_TRACTOR

(Tractor_Id,
Manufacturer_Id,

CDHS Web-Based Application Architecture Standards and Processes

Page 141 of 199 Version 3.0

Name)
` select PartId,

@sBoltId,
‘plow bolts’ -- name from vendor

catalog
from Equipment.dbo.TB_HEAVYDUTY

where Id = @pTractorId

• Provide an inline comment to explain any hard-coded value.

Updates

• Use the following outline for simple update statements. Format the where
clause as described earlier.

Example
update {database name}.{owner}.{table name}

set {column} = {expression}[,
{column} = {expression}[,
…]]

{where clause}
update Articles.dbo.TB_STATISTICS
set READ_HITS = READ_HITS + 1,

LAST_READ_DT = current_timestamp
where ARTICLE_ID = @pArticleId

• Use the following outline for table-to-table update statements. Format the
from and where clauses as described earlier.

Example
update {database name}.{owner}.{table name}

set {column} = {expression}[,
{column} = {expression}[,
…]]

{from clause}
[{where clause}]

update PUBS.dbo.TB_TITLES
set Total_Sales = t.Total_Sales + s.Quantity
from Pubs.dbo.TB_TITLES t

inner join Pubs.dbo.TB_SALES s
on t.Title_Id = s.Title_Id

CDHS Web-Based Application Architecture Standards and Processes

Page 142 of 199 Version 3.0

Deletes

• Use the following outline for simple delete statements. Format the where
clause as described earlier.

Example
delete [from] {database name}.{owner}.{table name}
{where clause}

delete from WebLog.dbo.TB_ARTICLE_STATISTICS
where ARTICLE_ID = @pArticleId

• Use the following outline for table-driven delete statements. Use a
subquery (formatted as described earlier) rather than using the TSQL
extension form.

Example
delete [from] {database name}.{owner}.{table name}
where [not] exists {correlated subquery
expression}

delete WebLog.dbo.TB_ARTICLE_STATISTICS as
where exists (select ID

from
ARTICLES.dbo.TB_EXPIRED

where ARTICLE_ID =
as.ARTICLE_ID)

Cursors
• Use cursors only where a set based operation is inappropriate. SQL

Server Unit will review the cursors usage prior to installation on a shared
server.

• Never use a cursor to return data to the application. The performance hit
for this is unacceptable.

CDHS Web-Based Application Architecture Standards and Processes

Page 143 of 199 Version 3.0

Section X Development and Deployment Process

Team Development Process

The CDHS has adopted a new application hosting model for development and
code deployment that is consistent with the technologies supported in our
infrastructure. This section describes the development process consistent with the
CDHS application architecture and infrastructure standards.

Initiating a New Project in CDHS

ASP.NET applications require a very specific set up process in CDHS. This
process requires the coordination of multiple Units and the developers for a
typical web based application. Before any code is written the following steps
must be taken:

1. The Internet Unit (IU) and SQL Server Unit (SSU) Questionnaire must be
completed

2. A meeting with the IU and SSU must take place before any development
takes place. This is a very important step because a VSS folder must be
created.

3. IU will create a folder structure within VSS for the new application
4. IU will create the web sites and associated web addresses on the various

servers
5. SSU creates the needed database for the project
6. SSU supplies the DAL to the developer which should be placed in the

developers bin folder of the application server hosting the web services

After the initial setup steps are completed the developers need to create a
development environment to match that of the hosting environment on their local
workstations. The developers will need to remain in contact with the IU to assure
that all the folders are matching across all servers.

Overview of the Team Development Environment

CDHS adopted an isolated web application development model. This model
allows CDHS to provide a flexible development environment. Using this model,
the developer works(edit, debug and run) in complete isolation on a local
development workstation using the web server (http://localhost). Access to
master source files is controlled via a Visual SourceSafe (VSS) database located
on a network file share.

Adopting an isolated development model provides the following advantages:

CDHS Web-Based Application Architecture Standards and Processes

Page 144 of 199 Version 3.0

 Team members develop independently of one another using separate

(local) instances of the web application.
 Developers can both develop and debug the application without

inadvertently interfering with one another.
 The method provides superior support for source-code control (compared

to the non-isolated model that uses FrontPage Extensions).
 The method is slightly faster in a local area network (LAN) environment

(compared to FrontPage Extensions).

Partitioning Solutions and Projects when creating new applications is a critical
process. CDHS chose to use a single solution model. Exceptions may apply for
applications with a large number of developers. The partitioning of a solution has
a significant impact on the development efforts and build process functions in a
team environment. With the single solution model, the developer creates a single
Visual Studio.NET solution and uses it as a container for all of the projects
defined by the application. Note the following when using a single solution
model:

 If one project needs to reference an assembly generated by another, use
project references.

 File references should be used only to reference outer-system assemblies
(such as .NET Framework assemblies and third-party assemblies) that are
not built with the rest of your system.

⇒ Figure 29 Visual SourceSafe Single Solution Model

The single solution model offers the following advantages:

 When referencing another assembly generated by a separate project, a
project reference is used. Project references are the preferred way to

CDHS Web-Based Application Architecture Standards and Processes

Page 145 of 199 Version 3.0

establish references to other assemblies and they are guaranteed to work
on all development workstations in a team environment.

 Assembly versioning issues are avoided, because Visual Studio .NET
detects when a client of a referenced assembly needs to be rebuilt.

 Project references are sensitive to changes in the configuration of the
referenced project meaning that the developer can automatically switch
from Debug and Release builds across projects without having to reset
references.

 The system build process and build script is much simpler.

The most flexible and least complicated method is adopted by CDHS for its
hosted applications. The isolated development model allows developers the
ability to create, build and test code on their local systems. A single solution
model gives both developers and CDHS the least complicated model for hosting
.NET applications.

Developer Workstation

When creating ASP.NET and web services using Visual SourceSafe (VSS)
certain tools and configuration settings need to be applied to the developer’s
workstation. Contact the Internet Unit for the most current build and maintenance
information. The application of IIS to the workstation must be cleared in
accordance with Section 6-1030 of the CDHS Information Security Policy prior to
contacting the Internet Unit.

Essential Servers

Supporting servers are maintained as a component of the CDHS infrastructure.
The following describes the various servers and their configurations, assisting the
developer in understanding the development environment.

Visual SourceSafe

This central server hosts one or more Microsoft Visual SourceSafe (VSS)
databases used to provide version controlled access to project source files. The
developer interacts with this server on a daily basis, checking project files in and
out through the Microsoft Visual Studio .NET integrated development
environment (IDE).

CDHS Web-Based Application Architecture Standards and Processes

Page 146 of 199 Version 3.0

Web Services Server

The primary function of the Web services server in the team development
environment is to host Extensible Markup Language (XML) web services that are
currently under development. While the development team members responsible
for web services develop them on their local workstations using local instances of
Microsoft Internet Information Server (IIS), the central web server allows the
services to be published for other developers or development teams to reference
from client projects.

Database Server

These servers host instances of Microsoft SQL Server™ and provide a central
location to which developers can connect to databases whose schemas match the
current system database design. In the new mode, all access to the data is through
the DAL.

Code Version Control & Promotion

The following sections demonstrate the logical and actual upload and flow
process for code version control and code promotion.

Logical View

The following diagram demonstrates the logical development model.

CDHS Web-Based Application Architecture Standards and Processes

Page 147 of 199 Version 3.0

⇒ Figure 30 Logical Team Development Process

Physical Flow

The initial deployment of code will occur between the developers workstation and
development servers. Subsequently, code will be deployed from test to
production. The following diagram demonstrates the actual development model
in the CDHS application environment.

CDHS Web-Based Application Architecture Standards and Processes

Page 148 of 199 Version 3.0

⇒ Figure 31 CDHS Physical Team Development

Current Intranet Model:

Web Servers:
OS
IIS
MDAC
.Net Framework

Domain Controllers:
OS

Database Servers:
OS
Microsoft SQL Server

01/05/2003

NTier Development

App Development App Production

Developers
Workstation

Development, Publishing and SQL
relation Model
Developers use Visual Studio .Net for
development
Shared Development/Code
Versioning
Developers use Visual Studio .Net for
development and Source Safe for versioning
and nightly, automatic publishing to dev and
manual code deployment to test and
production.

Build Server

Web Development Web Test Web Production

Presentation/Web
Services NTier

Development Model

App Test

Source Safe

Legend
Auto build put

Developer code push

Code check in/out

Code is manually deployed

Code is manually deployed

Manual code push

Code is developed and
ran on developers

workstation

Code is manually deployed

Code is manually deployed

Movement of Code from Developer Workstation to
Development Servers

The code deployment process is initiated by the developer using the following
procedure:

First-Time Deployment

1. The developers opens a help desk ticket with the DHS Information
Technology Help Desk and requests that the ticket be routed to the IU.

2. The IU will interview the developer to obtain details necessary to deploy
code.

3. The IU will conduct an initial code review.
4. If there is an issue found in the code review, the developer will be notified

and corrections must be made and the process re-initiated.
5. If the code passes the review, the code will be deployed to development

servers.

CDHS Web-Based Application Architecture Standards and Processes

Page 149 of 199 Version 3.0

Subsequent Deployments

1. Developers perform an xcopy deployment with no intervention by IU.

Movement of Code from Development to Test

First-Time Deployment

1. The developers opens a help desk ticket with the DHS Information
Technology Help Desk and requests that the ticket be routed to the IU.

2. The IU will conduct an initial code review.
3. If there is an issue found in the code review, the developer will be notified

and corrections must be made and the process re-initiated.
4. If the code passes the review, the code will be deployed to development

servers.

Subsequent Deployments

1. The developers opens a help desk ticket with the DHS Information
Technology Help Desk and requests that the ticket be routed to the IU.

2. The code will be deployed from development servers to test servers by the
IU.

Movement of Code to Production

As the application moves through the development lifecycle the final step is the
process of migrating the code from test to production. This step takes close
coordination of the developers, the SSU and the IU. The Application Change
Control process will be used to coordinate this final migration step

Procedures for Team Development

The following procedures are more detailed with respect to creating the work
environment and requesting the build and promotion of code.

CDHS Web-Based Application Architecture Standards and Processes

Page 150 of 199 Version 3.0

Visual SourceSafe Setup

The VSS server will be managed and maintained by the IU. The responsibility of
creating the initial root folder for all the applications being hosted or developed in
the CDHS environment will be that of the IU.

VSS on the Workstation

The folder structure and the naming of the folders would have already been
established at this point in the application development process within CDHS.
The creation of the application in Visual Studio should take place after the initial
meeting with the IU and SSU. One of the main deliverables of this meeting is
folder structure and the naming conventions for the application.

To create a solution and project, conduct the following steps using the agreed
upon names from the meeting:

The Project Leader creates a new project including all needed sub-folders (e.g.
for DATA, UTILITIES, BUSINESS etc.) as follows:

 Select menu Tools / Options / Projects / web Settings
o Check - “File Share”

 Select menu Tools / Options / Source Control / General
o Uncheck – check in everything when closing a solution
o Uncheck – keep items checked out when checking in
o Uncheck – allow checked in items to be edited
o Select - Use: “Visual SourceSafe” settings in the combobox

VSS and Workstation Folder Structure

One of the most important factors when setting up a new application using the
team development environment is the initial project structure. CDHS requires a
consistent structure across on development workstations and the build server. To
keep things simplified and symmetrical, a folder structure on the local developer
workstation must match that of the structure on the Visual SourceSafe (VSS)
Server.

By default, when creating a new ASP.NET Web application, the project file is
located in a nominated virtual root beneath your default Web site (usually
\inetpub\wwwroot) and the associated solution file is located beneath \My
Documents\Visual Studio Projects. This default arrangement is not ideal in a
team development environment because it breaks the symmetrical structure
between your VSS projects and local files and will not be supported at CDHS.

CDHS Web-Based Application Architecture Standards and Processes

Page 151 of 199 Version 3.0

Standard Folder Structure

The ITSD standard is to develop solutions on the D: drive and map a virtual
folder to your project in IIS.

 D:\inetpub\applications\<GroupName>\<SolutionName>Solution
 D:\inetpub\applications\<GroupName>\<SolutionName>Solution

\Project1
 D:\inetpub\applications\<GroupName>\<SolutionName>Solution

\Project2
 Etc.

Where <GroupName> is the name of your group
Where <SolutionName> is the name of your solution

Initial Project Creation of ITSD SourceSafe Solution

1. IU creates the initial root project folder for compiling the complete
project

a. Name folder as: <ProjectName>Solution.root, where
<ProjectName> is the name of the project

i. We add the “Solution.root” to the name as Visual Studio
expects this when adding a project to source control

2. LEAD DEVELOPER creates the project on their local hard drive

a. Create a new folder in:
D:\inetpub\applications\<GroupName>\<SolutionName>S
olution

i. <GroupName> - name of your group (e.g. IUProjects
for the Internet Unit)

ii. <SolutionName> - name of your solution
1. Always append “Solution” to the end as:

TestSolution

b. Open Visual Studio and create a new BLANK SOLUTION
i. Save it under the directory created above

c. In Visual Studio add all other projects to this solution as needed
i. Create a sub-folder under the above solution folder

using the project name
ii. In IIS make this folder a virtual root
iii. In Visual Studio add a new web project with the location

of this folder:
D:\inetpub\applications\<GroupName>\<ProjectName>
Solution\<Projectname>

d. Add Solution to SourceSafe

i. In Visual Studio right-click on the solution file in the
solution explorer and select “Add Solution to Source
Control”

CDHS Web-Based Application Architecture Standards and Processes

Page 152 of 199 Version 3.0

ii. Select the Visual SourceSafe folder created for you by
ITSD

1. e.g. <ProjectName>Solution.root

3. DEVELOPERS may now open Visual Studio on their workstation and
select to “Open project from Source Control” from the File / Source
Control menu.

a. On Going Maintenance

i. Add References to any non-.NET core assemblies to
Source Safe. If your project uses any assemblies (e.g.
interop etc.) they must also be added to the bin folders
in SourceSafe so that the build will succeed. (add to the
\bin folder)

1. Open SourceSafe and create a bin folder under

the project where required

2. Add each non .NET core DLL referenced in the

project

ii. Add to SourceSafe any new projects or files as
development progresses. If needed also update any shared
folders also by sharing the new items there.

4. LEAD DEVELOPER requests IU create a Build to be released to
Development / Test / Production as needed using the defined procedures.

Other SourceSafe Project Structures

The above structure should be suitable for most small to medium size projects
where each developer has the whole solution created on their local hard disk and
in Visual Studio. For larger projects where the team leader would like to isolate
developers, contact the Internet Unit.

Code Check-In/Out

Understanding the procedures for code check-in and check-out are important in a
team development environment. The following identifies the procedure that is to
be followed in CDHS.

Code Check-In

 Only check in code that complies without errors (warnings are ok),
 Always Check-In at the end of the day. On Check-IN always LABEL the

project using the current assembly version. This will make it easy to roll
back to a previous build.

CDHS Web-Based Application Architecture Standards and Processes

Page 153 of 199 Version 3.0

Note: If you cannot compile the project without errors at the end
of the day, at least back it up onto a network share BUT DO NOT
check it in

Check-Out

 Always get latest version of all projects (solution) at start of day,
 Check-out your own projects only as needed,
 Only check out the solution file for short periods to add or remove

projects.

Assemblies

Referencing Assemblies

1. Make references by project rather than by File if possible. The advantages
of using project references are:

 They work on all development workstations where the solution and

project set are loaded. This is because a project Globally Unique
Identifier (GUID) is placed in the project file, which uniquely
identifies the referenced project in the context of the current solution.

 They enable the Visual Studio .NET build system to track project
dependencies and determine the correct project build orders.

 They avoid the potential for referenced assemblies to be missing on a
particular computer.

 They automatically track project configuration changes. For example,
when you build using a debug configuration, any project references
refer to debug assemblies generated by the referenced projects, while
they refer to release assemblies in a release configuration. This means
that you can automatically switch from debug to release builds across
projects without having to reset references.

 They enable Visual Studio .NET to detect and prevent circular
dependencies.

2. Use file references only when necessary. If you cannot use a project

reference because you need to reference an assembly outside of your
current solutions project set, you must set a file reference.

Include Outer System Assemblies with Projects

The best way to handle outer system assemblies, such as third-party Web controls
or components that are not rebuilt by your build process if approved, is to include

CDHS Web-Based Application Architecture Standards and Processes

Page 154 of 199 Version 3.0

them directly in those projects that need to reference them. Conceptually, think of
outer system assemblies the same way as .bmp or .gif files.

To include and then reference an outer-system assembly, perform the following:

1. In Solution Explorer, right-click the project that needs to reference the
assembly, and then click Add Existing Item.

2. Browse to the assembly, and then click OK. The assembly is then copied
into the project folder and automatically added to VSS (assuming the
project is already under source control).

3. Use the Browse button in the Add Reference dialog box to set a file
reference to assembly in the project folder.

The advantages associated with using this approach are:

1. The file can be added to VSS as a new file version complete with its own
file history if outer system assemblies remain source controlled alongside
the project files

2. The entire system is contained within VSS; including all outer-system
assemblies, such as third party controls. You can retrieve an earlier
version of the system from VSS, including all source code and external
dependencies. This allows developers to have a complete snapshot of the
earlier system version.

Sharing Assemblies

In order to avoid difficulties in updating an assembly to a later version when a
particular outer system assembly is referenced by multiple projects, share the
outer system assembly is VSS between the projects that use it. This allows the file
to be updated within one project. The developer can refresh the copies maintained
within other projects by right-clicking the project within Solution Explorer, and
then clicking Get Latest Version (Recursive).

SourceSafe Security Issues

Depending on your SourceSafe structure you may wish to further secure the
SourceSafe folders beyond the default used by ITSD. This can be done on a
folder-by-folder or project-by-project basis. In no case can it be done on a file-by-
file basis.

CDHS Web-Based Application Architecture Standards and Processes

Page 155 of 199 Version 3.0

VVOOLLUUMMEE VVII:: CCHHAANNGGEE CCOONNTTRROOLL

This volume addresses the change control process that supports the application
environment at CDHS. It covers both infrastructure and application change
control processes.

The fundamental purpose of change management is to establish and maintain the
integrity and control of software and hardware products throughout a project’s life
cycle. The CDHS ITSD has developed both an infrastructure and application
change management process.

The key integrated aspects of the CDHS change management processes are:

 Management of the change process to ensure product and environment
integrity

 Identification of the baseline

 Status accounting

 Audit trail

It is important to understand that the scope of the change processes as identified
by ITSD is to protect the integrity of the hosting environment. It is essential for
application customers to ensure that sufficient change management, quality
assurance, and testing processes are in place to protect the integrity of the
application and its data as it relates to the business function the application
supports.

CDHS Web-Based Application Architecture Standards and Processes

Page 156 of 199 Version 3.0

4Section I Application Change Management

There are a number of web-based applications hosted within the California
Department of Health Services (CDHS) Information Technology Services
Division (ITSD) environment. A standard change management (CM) process is
vital to the stability and health of the overall environment and its users because
the volume and complexity of the applications hosted.

This process provides a method for complying with the provisions of the Health
Administrative Manual, Section 61040.7, State Administrative Manual, Sections
4946, and Statewide Information Management Manual Configuration
Management, Change Control.

The application environment serves development, test and production. The main
purpose of this Change Management procedure is to protect the integrity of the
production hosting environment. Therefore, any change being made to this
environment must follow the steps detailed in this document.

Change Management Objectives

The purpose of change management is to execute changes in a rational and
predictable manner so that staff and clients can plan accordingly. The extent of a
proposed change requires equivalent effort in forethought, monitoring, and post-
implementation evaluation. This enables project owners and customers to avoid
negative consequences while increasing the value of information resources.

The Information Technology Services Division (ITSD) hosts custom and
commercial off-the-shelf (COTS) applications. All of these utilize shared
infrastructure resources. The sharing scope may include network, server,
software and support staff. The impact of a particular application or application
component can have an unforeseen impact on the environment. Implementing a
change control process enables ITSD to document, track and respond to events
that may impact core resources. This Application Change Management process
provides the following:

1. Ability to maintain and improve system reliability, availability,
serviceability and functionality.

2. A method for users of the hosting services to submit a request for change
including introducing, modifying or retiring a system.

3. Identification of the entity requesting the change and which application is
subject to the change.

4 This section of this document will later be extracted. However, since this is the first time this
process s being introduced it is being incorporated in its entirety.

CDHS Web-Based Application Architecture Standards and Processes

Page 157 of 199 Version 3.0

4. A method for defining the change event plan.
5. A documented recovery or rollback procedure in the event that the change

is not successful.
6. An opportunity to assess the risk that the change may introduce to the

system or environment.
7. A communication process amongst those affected by the proposed change.
8. Identification of scheduling conflicts for changes.
9. A historical record of changes occurring in the hosting environment.
10. Enhancement of management and technical staff awareness of the above.

In-Scope Items

The scope of this application change process includes, but is not necessarily
limited to the following changes. In the event that there is any doubt, a change
request should be submitted:

1. COTS and Custom Application:
a. Introduction of New
b. Modification of Existing
c. Retirement or Transition Hosting of Existing

2. Environment Configuration:

a. Application Security Modifications
b. Underlying Support Product Configuration Changes
c. Creation or Deployment of Third-Party Tools

3. Database:

a. Database Modifications
b. Database Object Creation

Roles and Responsibilities

The Change Management members are intended to represent the groups that are
responsible for web, application and database layers for web based applications,
custom or commercial, hosted by the ITSD.

The Change Management members and their responsibility are as follows:

Role Qualification Responsibility
CM Lead

Change
Management Lead

An individual identified as
a Product Manager,
Project Manager, Senior
Architect or Developer for
an application.5

 Prepares and submits accurate change
submission request.
 Ensures that all appropriate entities identified
in their project structure approve of the
change and commitment of resources to do
so obtaining signatures for the requested

5 A Product Manager or Project Manager should have a sufficiently qualified technical
person present when discussing the change details.

CDHS Web-Based Application Architecture Standards and Processes

Page 158 of 199 Version 3.0

Role Qualification Responsibility
change if necessary.
 Sends Calendar notices to all technical
parties involved for the change window.
 Manages the communication channel for the
execution of steps in completing the change
one officially approved and during the
scheduled time.
 Manages communication with the end-user
community.

CM Coordinator

Change
Management
Coordinator

ITSD appointed Senior or
Staff level technical
representative.

 Conducts initial review of change request,
providing feedback to CM Lead.
 Makes initial change factor level assignment
and assigns change number.
 Acts as the manager for the change
documents and schedule.
 Adds the request to the schedule for change
activity.
 Facilitates the change meetings.

CM Committee

Change
Management
Committee

 Senior or Staff level
technical representatives
from ITSD Internet Unit,
SQL Server Unit, and
Information Security
Office.
 Network, Desktop,
Messaging, or other
representative (s) will
attend as needed.

 Reviews the requests for test,
implementation, documentation, scheduling
and recovery implications.
 Assesses request for environment impact.
 Assesses reasonableness of the initial change
level factor.
 Assigns appropriate technicians for changes.
 Negotiates schedule.

Change Management Timeline

The Change Management group will formally meet every Tuesday at 10:30 a.m.
to review change requests at the Change Management Review Meeting (CMRM).
Change Requests for the Tuesday meeting are to be submitted to the CMC by
close of business the previous Wednesday. The CM Coordinator is to give the
requestor feedback no later than close of business Friday on the initial
Assessment as described in subsequent sections.

CDHS Web-Based Application Architecture Standards and Processes

Page 159 of 199 Version 3.0

⇒ Figure 32 Change Management Timeline

Required Working Documents

The CM Committee will determine the appropriate action to be taken for each
change request. To make the informed decisions the CM Lead is to prepare and
adjust the following documentation, with assistance from CM Committee
members if necessary, for the CM Committee:

1. Change Request
2. List of Tasks to be Performed
3. Schedule
4. Change Status Form
5. Additional Support Documentation as Required by the CM Committee

Change Factors

The assessment of change factors is essential to the processing of a change
request. The CM Lead has the most knowledge about the application level
change as it relates to the business function of their represented organization
while the CM Coordinator has the most knowledge about the change as it relates
to the aggregate of environment changes. Together, the two parties must
contribute to the assessment of change factors. The following define the change
factors that are considered:

1. Risk
2. Environment Impact
3. Communication Requirements
4. Installation Time
5. Documentation Requirements
6. Education/Training Needs

Risk for the purposes of this process is the probability that the proposed change
will have a negative effect on the production environment, probability of success
on first attempt, and the complexity of recovery in the event of failure.

CDHS Web-Based Application Architecture Standards and Processes

Page 160 of 199 Version 3.0

Environment Impact is the identification of events that may be triggered as a
result of a change to the hosted application.

Communication Requirements takes into account the number of potential
contacts that must be notified of the change as they may be affected as a result of
the proposed change.

Installation Time addresses the total effort to prepare for the change, implement
it, test its success, recover from failure if needed and notify affected parties.

Documentation Requirements it is the assembly of information about the
change and recovery from it if necessary with the intention of the CM Committee
to retain accurate documentation about applications that ITSD hosts as prepared
by the CM Committee and the CM Lead.

Education/Training Needs considers how significant the education or training
efforts will be for the support staff responsible for supporting the application.

Emergency Exception is a way in which vital changes that need to happen very
quickly can be accomplished. It is the responsibility of the CM Lead to alert the
CM Coordinator that the request is an emergency. It is the CM Coordinator’s
responsibility to obtain ITSD Infrastructure Support Branch management
approval understanding that this management team will coordinate with higher
levels of management if necessary. All Emergency changes require full
documentation, but because of the reduced timeline the documentation may occur
after the fact.

Change Factor Ratings

As described in the subsequent process, the criteria above will be evaluated to
develop a Change Level Factor Rating. The ratings are: Level 1, Level 2 Level 3
or Level 4 as defined by the following:

Level 1 is highly complex in nature, requiring a minimum of two weeks
advanced notice, based on the following:

1. Potential impact to system availability to large portion of the hosted or
user community

2. May be disruptive to the production environment
3. Complex notification base
4. Complex installation or recovery process
5. A large number of support staff need to be involved with significant

coordination required
6. Comprehensive nature of documentation required to support the change
7. Lack of knowledge of support staff

CDHS Web-Based Application Architecture Standards and Processes

Page 161 of 199 Version 3.0

Level 2 is of medium complexity, requiring standard notification based on the
following:

1. Involves general application or database changes that are more typical in
nature including new application releases, database modifications, tool
upgrades and general configuration changes.

2. Is low risk for production disruption
3. Requires little notification
4. Has a routine-in-nature installation and recovery process
5. Requires little coordination
6. Requires little documentation
7. Staff are familiar with the technologies and support of them

Level 3 is of low complexity requiring standard notification based on the
following:

1. Changes can be accomplished quickly with no perceived impact or risk
2. Normally non-disruptive or administrative in nature
3. Require a small number of individuals to be involved
4. The impact of failure is either highly unlikely or minimally limited in

scope
5. Requires limited coordination
6. Requires little documentation
7. Staff are familiar with the technologies and support of them

Level 4 is executed as a result of an operational emergency as deemed by the CM
Lead with feedback from CM Committee members when feasible and may be
executed in an expedited manner.

Tracking Requests

It is the intention of the CM Committee to provide an easy method of open
communication. This includes the ability for CM Lead to easily track the status
of changes they submitted. This is accomplished by having a master change list
in which all approved change requests are posted. This allows both the CM Lead
and the CM Committee to have a central repository of activity and schedule.
Each request is given a unique number for tracking the change throughout the
process.

Change Management Process

The change management process is designed to allow hosted customers to request
deployment, modification, or retirement of a custom or commercially purchased
application. The process is intended to allow the customer to communicate
procedures for implementation of the change. At the same time, the hosting entity

CDHS Web-Based Application Architecture Standards and Processes

Page 162 of 199 Version 3.0

assesses the impact on the environment and supporting resources to eliminate any
issues enabling successful change or recovery in the event that a change does not
result in the desired outcome. In addition, both parties are kept abreast of the
progress and historical record of the changes.

The Change Management process consists of several phase consisting of the
following:

1. Preparation and Submission
2. Assessment
3. Concept Authorization or Rejection
4. Planning
5. Change Authorization or Rejection Meeting
6. Scheduling
7. Implementation
8. Post Implementation Review

Preparation and Submission

The Preparation and Submission phase includes a CM Lead completion of a
change request and submission to the CM Coordinator.

Assessment

In the Assessment phase, the CM Coordinator assigns a tracking number and
reviews the request form for completeness. It is the intent of the CM Process to
improve the efficiency with which changes are implemented for ITSD and its
customers and requires structure.

Complete

If complete, the CM Coordinator makes an initial Change Level Factor
classification. The Change Request is made available to the CM Committee for
review and is placed on the Change Items list for discussion at the Change
Control meeting.

Incomplete
If incomplete, the request preparer will be notified that modifications are
necessary.

Concept Authorization or Rejection
The Concept Authorization or Rejection phase solidifies the approval or denial of
a proposed change as a concept. Approval solidifies the intent of all parties to

CDHS Web-Based Application Architecture Standards and Processes

Page 163 of 199 Version 3.0

dedicate resources to the review effort to assess the impact and risks associated
with the proposed change. Rejection solidifies the intent of all parties to cease the
execution until sufficient amendments are made or altogether.

Planning

The Planning phase deliverables include identification of specific tasks, event
sequences and responsibilities for completion of a successful change. It serves to
minimize oversight of tasks, dependencies or scheduling issues.

Change Authorization or Rejection Meeting

The Change Authorization or Rejection Meeting phase solidifies the approval or
denial of a proposed change. Approval solidifies the intent of all parties to
execute the steps defined in the request with an accurate view of the risks and
impact that the change may have on the environment. Rejection solidifies the
intent of all parties to cease the execution altogether or until sufficient
amendments are made.

During this meeting the group requesting the change will give an overview of the
change request. Immediately following questions can be presented and concerns
voiced. The CM Committee will approve or reject the change request.

If the request is approved the official schedule can be proposed by the requestor.
Once final approval has been made the change is added to the master change
schedule with a set date for the change to be made.

If the change is rejected, the request is returned to the author for further action as
identified in the meeting. Examples include, amending proposed schedules,
providing additional information in support of the change, and modification of
recovery procedures.

Scheduling

The Scheduling phase deliverables ensure that all parties essential to completion
of the changes are authorized to perform the work and have allocated the
appropriate time and resource to execution of the change. All changes are to be
scheduled and performed based on the master activity schedule. This allows
resource conflicts to be identified and alternate arrangements to be made when
necessary.

Implementation

The Implementation process establishes a mechanism for which changes are
applied and reversed if critical success checkpoints have failed.

CDHS Web-Based Application Architecture Standards and Processes

Page 164 of 199 Version 3.0

It is the CM Lead’s responsibility to ensure that their user community is aware of
any proposed changes in advance, providing them with instructions on how to
notify the appropriate Program contact to report issues. In the event that the
change is driven by infrastructure needs, the responsibility lies on ITSD for
notification to Program contacts.

CDHS Web-Based Application Architecture Standards and Processes

Page 165 of 199 Version 3.0

Post–Implementation Review

The Post-Implementation Review process is a mechanism for the CM Committee
to evaluate if the change occurred in accordance with the process. Process
amendments may result from this. This process ensures that:

1. Change procedure was followed
2. Processes adequately enabled fulfillment of the objectives or recovery if

necessary. If not, an opportunity to modify the process is present.
3. Changes are assigned a final and documented status of complete, failed,

backed out or cancelled.

Application Change Management Processes
Diagrams

The following diagrams show the process for executing a change request.

CDHS Web-Based Application Architecture Standards and Processes

Page 166 of 199 Version 3.0

Level 1 & 2, High and Medium Complexity

CDHS Web-Based Application Architecture Standards and Processes

Page 167 of 199 Version 3.0

Level 3, Low Complexity

CM Lead submits
Change Request

(CR)

Application Change Management Process

CM Coordinator
assigns Change

Number

Change Level 3
Change not Required via CM Committee

Change is
performed

Post
Implementation

Review
Close

CM Lead updates

Technical staff
scheduled for

Is change
complete

CR returned to
CM Lead for
completion

YesNo

Change
Successful YesPerfom Back Out

procedure

Post
Implementation

Review
No

Appropriate
Change Level

Yes

No

CM Coordinator
Assigns New

Level, Enter Level
1&2 Process

Re-Start Process

CDHS Web-Based Application Architecture Standards and Processes

Page 168 of 199 Version 3.0

Level 4, Emergency

CM Lead Submits
Change Request

(CR)

Application Change Management Process

CM Coordinator
Assigns ID

Change Level Emergency
Change not Required via CM Committee

Perform Change

CM Coordinator
Escalates Request

Appropriate
Change Members

are notified

Expedited review
process takes

place

Approved
Emergency

CR Level 1, 2 or 3
Process

Review team
assess risk and
verifies change

plan

Technical staff
scheduled for

change

Attempt is made to
notify all parties

that may affected

Change
Successful

Update Master
CR List Close

No

Yes

Post
Implementation

Including Required
Documentation

Perform Back Out
procedure

Post-
Implementation No

Re-Start Process

CDHS Web-Based Application Architecture Standards and Processes

Page 169 of 199 Version 3.0

Standard Application Change Procedure

The following summarizes a typical change process as it is implemented.

The basic process for each change is as follows; however, additional details are
often necessary and should be addressed using the Additional Procedures section
that follows:

Standard Change and Recovery

Procedure

Standard Change and Recovery Procedure Detail

Perform Baseline Customer is to validate working baseline of the

application prior to change.

 IU staff will perform baseline statistics on server

performance if required.

 DBA will perform baseline statistics of database

performance if required.

Perform Complete Backup The IU staff person will copy all user interface and

business logic components to a back up directory on a

local drive of the web and application servers if required.

 During this process the DBA from the SSU will perform

a complete back up and store it on the local drive of the

server if required.

Perform Upgrade The IU staff person will perform the approved change

request if required.

 The DBA will perform the approved change request if

required.

Infrastructure Test of

Application

 The IU staff person will test basic connectivity.

 The DBA will conduct test basic functions:

o Verify database is online

o Use Query Analyzer to connect to the database

o Run simple query to verify connectivity

Infrastructure Assessment IU and DBA staff will determine if the change requires

rollback due to any infrastructure related issue. If no

issue detected, Test Application Integrity step occurs. If

a significant issue is noted, Rollback step occurs.

Test Application Integrity The change requestor or designated test staff will log in

via the application to verify connectivity from the

application to the database using a test script developed

CDHS Web-Based Application Architecture Standards and Processes

Page 170 of 199 Version 3.0

Standard Change and Recovery

Procedure

Standard Change and Recovery Procedure Detail

by the customer in advance to validate success of

changes.

 Change requestor will notify IU and SSU staff if any

problem arises during testing.

 Change requestor will determine if change is successful

or requires rollback.

Rollback The web user interface, business logic, or

web/application server configuration changes are

restored to the initial state using pre-change

documentation and backed-up files.

 The database is immediately restored from the complete

back up.

 The change is terminated and Post-Implementation

Change Status Details form is completed.

CDHS Web-Based Application Architecture Standards and Processes

Page 171 of 199 Version 3.0

Application Change Request Form

Please complete all of the following areas unless noted as CC use only. This is a two
part form.

Part A – Change Summary
Change Requestor Requestor’s Phone

Requestor’s Email Application Name

Proposed Change Level 1 2 3 4 Date Requested

Project Billing Code Division, Branch, Unit

Estimated Impact H M L Unk Estimated Completion

Change Type

Staff Needed
Internet6 Database Network Server Help Desk

Messaging
Client Project Office Other, Specify

Purpose of Change

Description of Change

Requestor Notes

Supporting Documentation Required

Change Recovery Plan
Detailed Change Instructions

Other, Please Specify

For CC use only

Change Number

Change Approved Y N P D Change Level
Assigned 1 2 3 4

Change Date CC Coordinator

Change Status Successful
Successful with unexpected issues

Postponed/Cancelled
Unsuccessful

Change Notes

6 Internet staff is associated with staff that support the user interface and business logic servers for
the application.

CDHS Web-Based Application Architecture Standards and Processes

Page 172 of 199 Version 3.0

Part B – Change Detail

 Database Change Detail

The following details the changes that are being made to the production database for the

application.

Change Risk H M L Unk
Estimated Time to
Complete Change

Risk
Assignment
Reasoning

Reason for
Change

Testing Method

Detailed
Description of
Change

Resources
Needed

Internet Staff

SQL Server Unit

Other Staff

For CC Use Only

Change
Reviewed By

 Changed Approved By

CDHS Web-Based Application Architecture Standards and Processes

Page 173 of 199 Version 3.0

Application Change Detail

The following details the changes that are being made to one or more of the following:

 Application User Interface
 Application Business Logic
 Commercial Web Product

Risk of Change H M L Unk
Estimated Time to
Complete Change

Risk
Assignment
Reasoning

Reason for
Change

Testing Method

Type of
Application

Custom COTS Change Interface

User Interface

Web Service

Business Logic

Detailed
Description of
Change

Resources
Needed

Internet Staff

SQL Server Unit

Other Staff

For CC Use Only

Change
Reviewed By

 Changed Approved By

CDHS Web-Based Application Architecture Standards and Processes

Page 174 of 199 Version 3.0

Change Status Supplemental Forms

The following supplemental forms may be required as part of a completed change
request package.

CDHS Web-Based Application Architecture Standards and Processes

Page 175 of 199 Version 3.0

Change Recovery Plan Form

The following information describes the recovery plan for both the database and

application in the event that the standard procedures identified in Appendix B are not

sufficient to recover from a change that is not successful.

Additional Procedures

Additional Step(s)

Details

Reason(s)

CDHS Web-Based Application Architecture Standards and Processes

Page 176 of 199 Version 3.0

Detailed Change Instructions Form

Please list all steps that were taken by the developers to perform the requested change.

In addition to the steps taken to perform the change please list out the instructions for

deploying the proposed change. Fill out all sections that apply.

Database

List all DB objects
added or modified

Special Instructions
List any non standard

instructions for deployment

of objects listed above

Application

List all new
application changes

Special Instructions
List any non standard

instructions for deployment

of objects listed above

CDHS Web-Based Application Architecture Standards and Processes

Page 177 of 199 Version 3.0

Post-Implementation Change Status Details Form

In the event of a proposed change being assigned a change status of unsuccessful the

following form must be completed before a new Change Request can be rescheduled.

Change Number Change Date

New proposed change
date if any

List all individuals
involved in change

Reason for
unsuccessful change

Did it cause
production down time

Y N Unk
Did Roll Back Plan
succeed

Y N Unk

Was all production
data retrieved

Y N Unk
Was the testing plan
adequate

Y N Unk

Future steps that can
be taken for
successful change

CDHS Web-Based Application Architecture Standards and Processes

Page 178 of 199 Version 3.0

Section II Infrastructure Change Control

Infrastructure Change Control

ITSD has implemented a Infrastructure Change Control Committee to formally
manage changes to the CDHS production environment. It is used for review and
approval of all requests for change. Participation by all levels of ITSD technical
staff will help to ensure that the division provides the best possible standards for
information technology services. The Infrastructure change control information is
documented, maintained and available in the CDHS Exchange Public Folders
located at: outlook:\\DHS Public Folders\DHS-Programs\ITSD\ITSD -
Public\ITSD-Change Control .

CDHS Web-Based Application Architecture Standards and Processes

Page 179 of 199 Version 3.0

VVOOLLUUMMEE VVIIII :: AAPPPPEENNDDIICCIIEESS

The following appendices contain essential information regarding additional
services or supporting background information in utilizing the CDHS
environment for hosting services.

CDHS Web-Based Application Architecture Standards and Processes

Page 180 of 199 Version 3.0

Appendix A Web and Database Hosting Questionnaire

This document contains a four-part questionnaire to be completed during the
Design phase of your project. The components of the questionnaire are:

1. Project Information
2. Application Details
3. Technical Diagrams, and
4. Systems Documentation

If you have any questions about completing this form, please contact the
following groups via the CDHS Information Technology Help Desk at:
http://remedyhelp.dhs.ca.gov:

 For Database related questions including data and data
access layers: SQL Server Unit

 For Web Hosting related questions including
presentation and business logic layers: Internet Unit

CDHS Web-Based Application Architecture Standards and Processes

Page 181 of 199 Version 3.0

Project Information

Please provide the following information for the purpose of assisting us in
coordinating project management activities:

Project Identification Information

Project Name: Project CAB Code:

Project Contact Information

Project Sponsor
Name:
Title:
E-mail Address:
Office Phone:
Mobile/Pager:

Project Manager

Name:
Title:
E-mail Address:
Office Phone:
Mobile/Pager:

Program Technical Lead

Name:
Title:
E-mail Address:
Office Phone:
Mobile/Pager:

ITSD Project Management Office Representative

Name:
Title:
E-mail Address:
Office Phone:
Mobile/Pager:

CDHS Web-Based Application Architecture Standards and Processes

Page 182 of 199 Version 3.0

ITSD Application Support Branch Project Manager (if applicable)
Name:
Title:
E-mail Address:
Office Phone:
Mobile/Pager:

Application Details

The following section is designed to capture details related to the application
hosting requirements.

ID
General Information

1. Will this application be considered “mission critical”? (Please check one)

 Yes
 No

2. Is this application? (Please check one)

 Web Interface based
 Windows Interface based
 Other

3. Application provides access to information that is: (Please check one)

 Confidential
 Sensitive
 Private
 Public

4. Anticipated application lifecycle duration? (Please check one)

 Single event
 Annual event for specified duration
 Continuous business function

5. Availability expectation: (Please check one)

 24/7
 Business Hours Only (M-F, 7:00 a.m. – 5:00 p.m.)
 Other, please specify:

CDHS Web-Based Application Architecture Standards and Processes

Page 183 of 199 Version 3.0

ID
General Information

6. Application provides access for: (Please check one)

 1-25 users
 26-75 users
 76-150 users
 151+ users, please specify:

7. Application provides access to: (Please check all that apply)

 Public
 CDHS Employees

All employees
Workgroup(s) only

 Other State Agencies, please specify:
 Business Partners, please specify:

8. Application provides access to end-users from: (Please check all that apply)

 Internal CDHS network
 East End Complex
 Richmond Lab Complex / Bay Area
 Southern California
 Other, please specify:

 Remote Access through VPN

 Employees
 Consultants Working in Employee Capacity
 Non-Employee/Consultants Working in Employee Capacity

Users

9. Were you given a copy of the Information Technology Architecture Standards?

 Yes, Version Date:
 No

CDHS Web-Based Application Architecture Standards and Processes

Page 184 of 199 Version 3.0

ID

Application Hosting Details

1. Where will this application be hosted? (Please all that apply)

 ITSD

 Lab
 Development
 Test
 Production

 HHSDC

 Lab
 Development
 Test
 Production

 Other, specify:

If you will not be using ITSD managed enterprise resources for development,
test and production purposes, who will manage the following:

Infrastructure
Servers
Application Components/Services
Web Components/Services
Database
Other:

2. The proposed uniform resource locator (URL) is:

3. Is this web application or site related to a media campaign?

 Yes, Office of Public Affairs contact is:
 No

4. User interface screens estimated: (Please check one)

10 or less
11- 50
51-100
100+, please specify:

CDHS Web-Based Application Architecture Standards and Processes

Page 185 of 199 Version 3.0

ID
Application Hosting Details

5. Application data transactions per year: (Please check one)

 10 thousand or less transactions
 11 - 25 thousand transactions
 26 - 50 thousand transactions
 51 - 100 thousand transactions
 100+ thousand transactions

6. Will this application require database support outside normal business hours?
(Please check one)

 Yes
 No

7. Is MS Access part of this application? (Please check one)

 Yes
 No

8. Is Business Intelligence part of this application? (Please check one)

 Yes
 No

9. Will you require site use reporting services? (Please check one)

 Yes
 No

10. Will CDHS own the source code in a non-compiled format? (Please check one)

 Yes
 No

CDHS Web-Based Application Architecture Standards and Processes

Page 186 of 199 Version 3.0

ID

Application Development & Deployment Details

1. Will the application use exception handling via? (Please check one)

 In global.asax
 On page

2. Will the application use custom error pages? (Please check one)

 Static messages
 Showing runtime errors

3. If displaying user input as output: (Please check all that apply)

 Validating all user input (for script tags etc.)?
 Yes
 No

 HTML-encoding output?
 Yes
 No

4. Will the application contain any sensitive data in code? (Please check one)

 Yes
 No

5. Will you require testing services? (Please check all that apply)

 Database Baseline
 Database Performance
 Database Server Performance
 Application Baseline
 Application Performance
 Application Server Performance
 Web Server Performance
 System Integration Testing
 Network Performance
 Acceptance Testing
 Other, specify:

6. Identify the programming languages you intend to use: (Please check one)

 C#
 VB.NET
 Other, specify:

CDHS Web-Based Application Architecture Standards and Processes

Page 187 of 199 Version 3.0

ID
Application Development & Deployment Details

7. Will the application meet the minimum State requirements for accessibility as
further defined by the World Wide Web Consortium (W3C) –
http://www.w3.org/WAI? (Please check one)

 Yes
 No, explain:

8. Will the application target browsers and versions other than those specified in
the State of California standards for public access? (Please check one)

 Yes
 No, explain including versions of CSS, HTML, etc that you will use:

9. What is the intended saving state? (Please check all that apply)

 App Object estimated size:
 Session , estimated size:
 Cache , estimated size:
 Viewstate, estimated size (largest page):

Estimate # of concurrent users Normal :
Estimate # of concurrent users Peak:
Peak Frequency:

If crafted for web farms, select where session will be saved:

State Service
SQL Server

CDHS Web-Based Application Architecture Standards and Processes

Page 188 of 199 Version 3.0

ID Systems Integration Details

1. Does this Application integrate with any other systems? (for example:
Exchange, Biztalk, SharePoint, Remedy, Mainframe, State Agency, etc.)
(Please check one)

 Yes, please specify:
 No

2. Does this application require FTP (File Transmission Protocol) services for file
transfer? (Please check one)

 Yes
 No

3. System supports ability to control import and export of data. (Please check
one)

 Yes
 No
 N/A

4. System provides web applications that require access-using protocols (such as
HTTP, Telnet, NNTP, or FTP). (Please check one)

 Yes
 No
 N/A

5. FTP, if allowed inbound, should not allow anonymous FTP. (Please check one)

 Yes
 No
 N/A

 If yes, specify:

CDHS Web-Based Application Architecture Standards and Processes

Page 189 of 199 Version 3.0

ID
Additional Services

1. Does system require the use of e-mail or online text messaging services?
(Please check one)

 Yes
 No

ID Database Security

1. Is auditing a requirement or function within this application? (Please check
one)

 Requirement
 Function
 No Auditing Requirement

2. Does this Application audit user insert activity? (Please check one)

 Yes
 No

3. Does this Application audit user update activity? (Please check one)

 Yes
 No

4. Does this Application audit user delete activity? (Please check one)

 Yes
 No

5. Does this Application audit logins? (Please check one)

 Yes
 No

CDHS Web-Based Application Architecture Standards and Processes

Page 190 of 199 Version 3.0

ID Database Functions

1. Does this application use SQL “Systems / Extended Stored Procedures”? (Please
check one)

 Yes
 No

2. Does this application use SQLXML? (Please check one)

 Yes
 No

3. Does this application use VIEWS? (Please check one)

 Yes
 No

4. Does this application use SQL “User Defined Data Types”? (Please check one)

 Yes
 No

5. Does this application use SQL “User Defined Functions”? (Please check one)

 Yes
 No

6. Does this application use SQL “Roles”? (Please check one)

 Yes
 No

7. Does this application use MS Analysis Services? (Please check one)

 Yes
 No

8. Does this application use SQL “Full-Text Search”? (Please check one)

 Yes
 No

9. Does this application use SQL “Rules”? (Please check one)

 Yes
 No

CDHS Web-Based Application Architecture Standards and Processes

Page 191 of 199 Version 3.0

ID Database Functions

10. Does this application include any Data Definition Language (DDL) commands?
(Please check one)

 Yes
 No

11. Does the database schema contain referential integrity? (Please check one)

 Yes
 No

12. Does the database schema contain column constraints? (Please check one)

 Yes
 No

13. Does this Application require file-level and column-level data encryption? (Please
check one)

 Yes
 No

CDHS Web-Based Application Architecture Standards and Processes

Page 192 of 199 Version 3.0

ID Database Jobs

1. Are data imports and/or exports required for this application? (Please check
one)

 Yes, please select all that apply:

 Scheduled
 On-Time
 On-Demand
 Data Transformation Service (DTS)

 No
2. Does this application use MS Distributed Transaction Coordinator (MSDTC)?

(Please check one)

 Yes
 No

CDHS Web-Based Application Architecture Standards and Processes

Page 193 of 199 Version 3.0

Technical Diagrams

Please provide the following technical diagrams including the items specified
below:

1. Proposed Architecture Diagram if different from current ITSD production
environment (indicate hardware, OS, and software). An example is
depicted in Figure A.1.0 below.

a. For ITSD HASS Unit 1 note that this is QA/QC Item 2.4

2. Application Logical and Data Flow Diagram. An example is located in

Figure A.2.0 below.
a. For ITSD HASS Unit 1 note that this is QA/QC Item 4.2

Figure A.1.0 Physical Production Infrastructure Design

Application Zone
Workgroups

Project Private Zone
AD Forest

Intranet ZoneWeb Zone
AD Forest

Example: Physical Production Infrastructure/Server Design/Implementation
(Please include hardware, software, version and models).

WEB
FTP Server

Shared
Win 2000
AD DC

Production,
Authentication,

Certificates

Database Zone
Workgroups

Application
Server

 Internal Firewall

Database
Server

WEB Server
Production

Private Win 2000
AD DC

Production,
PH Directory

Biztalk Server
Production

SQL 1433

C
O

M
 +

HTTP, MSMQ

LD
AP

Q
uery

H
TTP

,
S

O
A

P
,

S
M

TP
,

U
D

D
I

S
Q

L 1433

ISA
Server

Production

External Firewall

HTTPS, SSL, SMTP, FTP CI SC O SYSTE MS

S
Q

L 1433

To HHSDC,
DHS

HTTPS, SSL, SMTP, FTP

SQL 1433

CDHS Web-Based Application Architecture Standards and Processes

Page 194 of 199 Version 3.0

Figure A.2.0 Application Logical and Data Flow Sample Diagram

Web-Front Services

- Web Form/Reports
- HTTP HL7/CSV File Upload
- FTP HL7/CSV File Upload
- File Queue Management
- Management Pages

MS IIS, FTP, SMTP

DHS
Intranet

Internet Firewall

HHSDC

Internet

Public
and

Private
Labs

Local
Public
Health

Officials

Small Labs can key data
directly into a web form

Labs and other health
institutions transmit HL7
transactions in batches via
secure webform upload

Labs and other health
institutions can view results
through a secure
connection

Large health institutions
transmit HL7 transactions
in batches via FTP upload
and receive confirmation
via SMTP

Application Services

- Message Translation
- Confirmation
- Data Monitoring
- Alerts Distribution

MS Windows 2000, Custom
COM Components

Alerts are distributed
through Alerting Engine/
SMTP Service within IIS

Email Confirmations are
sent using Notification
Engine/SMTP

Data Services

- User Directory
- Lab Data
- PH Role Directory
- System Log

 MS SQL 2000

State
Public
Health

Officials

External Users

Internal DHS Users

DTS Packages

Stored Procedures

Production
Data

Staging Data

Query
Report/

Partitioned
Read-Only

Data

Offline Data File
e.g.

excel spreadsheet

Mainframe Data File
e.g.

VSAM file, DB2
Data, Aggregate

Report File

Internal Firewall

Project Name: ------
Application Logical / Data Flow

Date: 11/11/03

CDHS Web-Based Application Architecture Standards and Processes

Page 195 of 199 Version 3.0

Systems Documentation

Please provide the following systems documentation:

1. Copy of the approved FSR or IFSR or Conceptual Paper.
a. For ITSD HASS Unit 1 note that this is QA/QC Item 2.6

2. For ITSD HASS Unit 1 - Storyboard for your application
a. For ITSD HASS Unit 1 note that this is QA/QC Item 3.1, 3.

3. Methods for obtaining and exposing data in this system including:
a. Diagram

i. Description of each of those methods, identifying:
1. Where the users of the data enter the system
2. The number of users accessing the system from

each interface
3. The number or volume of data being transacted

including:
a. Entry
b. Automated Transfer
c. Reporting

b. Data retention policy for the system. For example, a 10-year
history of data will be stored on SQL tables. As data from the
current year is added to the tables, data from the 10th prior year
will be achieved or deleted.

i. How long will the data be kept, including:
1. Staging Data

a. Archive Data
b. Purging Data
c. Data transferring to other source

4. Document your proposed development environment:
a. If you will be using the ITSD enterprise supported resources,

please provide the following:

Hardware Software (include versions)
Desktop
Database Server
Web Server
Application Server
Code Libraries or Non-Standard Components Proposed

b. Otherwise, please provide the following:

Hardware Software (include versions)
Desktop
Code Libraries or Non-Standard Components Proposed

CDHS Web-Based Application Architecture Standards and Processes

Page 196 of 199 Version 3.0

Appendix C Desktop Standards

The IT equipment within the CDHS is provided to support the department's goal
of improving the health of all Californians. The costs of the resources allocated to
design, implement, and maintain this equipment, must be minimized to ensure
that spending on health care programs and services are maximized.

The CDHS IT vision is to provide secure networked personal computers with
standard software that allow all users to perform work related functions such as e-
mail, report creation, presentations, spreadsheets, etc. The content and links from
this page outline the procurement, use, support, and retirement processes
associated with the life cycle of these IT resources. Industry research and
deployment history is available as well.

Please reference the most current Desktop Standards by visiting the CDHS
Intranet site: http://itsd.int.dhs.ca.gov/ei/standards/.

CDHS Web-Based Application Architecture Standards and Processes

Page 197 of 199 Version 3.0

Appendix D Server Standards

Refer to INFORMATION SECURITY STANDARDS ISO STANDARD NO.
S17 CDHS SERVER STANDARDS located at :
http://itsd.int.dhs.ca.gov/ei/standards/.

CDHS Web-Based Application Architecture Standards and Processes

Page 198 of 199 Version 3.0

Appendix E Department of Health Services Research Center
(CDHSRC) Architecture & Design

The CDHSRC is available for information technology research purposes. Please
visit http://itsd.int.dhs.ca.gov/ei/dhsrc/ for the most current information.

CDHS Web-Based Application Architecture Standards and Processes

Page 199 of 199 Version 3.0

